
Red-black trees (19.5),
B-trees (19.8),

2-3-4 trees



  

Red-black trees

A red-black tree is a balanced BST
It has a more complicated invariant than 
an AVL tree:
● Each node is coloured red or black
● A red node cannot have a red child
● In any path from the root to a null, the number 

of black nodes is the same
● The root node is black

Implicitly, a null is coloured black



  

A red-black tree
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Not red-black trees – why?
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Red-black trees – invariant

If the shortest
path has k nodes
(all black)...

...then the longest
path can only have
2k nodes

“A red node cannot have
a red child”

“In each path from the
root to a leaf, the number

of black nodes is the same”

Maximum height
2 log n,

where n is number
of nodes



  

Maintaining the red-black invariant

In AVL trees, we maintained the 
invariant by rotating parts of the tree
In red-black trees, we use two operations:
● rotations
● recolouring: changing a red node to black or vice 

versa

Recolouring is an “administrative” 
operation that doesn't change the 
structure or contents of the tree



  

AVL versus red-black trees

To insert a value into an AVL tree:
● go down the tree to find the parent of the new node
● insert a new node as a child
● go up the three, rebalancing

...so two passes of the tree (down and up) 
required in the worst case
In a red-black tree:
● go down the tree to find the parent of the new node...
● ...but rebalance and recolour the tree as you go down
● after inserting, no need to go up the tree again



  

Red-black insertion

First, add the new node as in a BST, 
making it red

If the new node's parent is black, 
everything's fine

P P

X
... ...



  

Red-black insertion

If the parent of the new node is red, we 
have broken the invariant. (How?) We 
need to repair it.
We need to consider several cases.
In all cases, since the parent node is red, 
the grandparent is black. (Why?)
Let's take the case where the parent's 
sibling is black.



  

Left-left tree (“outside grandchild”)
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ED

X: Newly-inserted
node, breaks invariant

P: Parent of
new node

G: Grandparent of
new node

S: Sibling of
parent



  

Left-left tree (“outside grandchild”)

X
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Recolouring

E

Now the number of
black nodes in each
path has changed –

but right rotation
will fix it

X

P

C

G

BA

S

D E



  

Left-left tree (“outside grandchild”)

X

P

C

G

BA
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D

Right rotation
and recolouring

X

P
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ED

E

Why does this
now satisfy the

invariant?

X < P < G < S



  

Left-right tree (“inside grandchild”)
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Left rotation of P

E
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Now we have a
left-left tree!

We know how to
fix that already.

P < X < G < S



  

Left-right tree (“inside grandchild”)

Right rotation
and recolouring

P

X

C

G

BA S

ED

X

P

A

G

C

B

S

D E



  

Insert the new node as in a BST, make it 
red
Problem: if the parent is red, the 
invariant is broken (red node with red 
child)
To fix a red node with a red child:
● If the node has a black sibling, rotate and 

recolour
● If the node has a red sibling, …? Two approaches, 

bottom-up (simpler) and top-down (more efficient)

Summary so far



  

Bottom-up insertion

If a new node, its parent and its parent's 
sibling are all red: do a colour flip
● Make the parent and its sibling black, and the 

grandparent red

Colour flip

P

X

G

C

B
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D E
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Bottom-up insertion

A colour flip almost restores the 
invariant...
...but if G has a red parent, we will have a 
red node with a red child
So move up the tree to G and apply the 
same double-red repair process there as 
we did to X.



  

Bottom-up insertion

Insert the new node as in a BST, make it red
If the new node has a red parent P:
● If the parent's sibling S is black, use rotations and 

recolourings to fix it – the rotations are the same as 
in an AVL tree

● If S is red, do a colour flip, which makes the 
grandparent G red – so you need to do the same 
double-red repair to G if its parent is red

Lastly: if you get to the root and the root is 
red, make it black
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has 
black children (a null 
reference is considered to 
refer to a black node)
3.The number of black nodes 
in any path from the root to a 
leaf is the same

11

2 14

5 8

71
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black 
children (a null reference is 
considered to refer to a black 
node)
1.The number of black nodes 
in any path from the root to a 
leaf is the same

11

2 14

5 8

71

4
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black 
children (a null reference is 
considered to refer to a black 
node)
1.The number of black nodes 
in any path from the root to a 
leaf is the same

11

2 14

5 8

71

4 Colour 
flip!
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black 
children (a null reference is 
considered to refer to a black 
node)
1.The number of black nodes 
in any path from the root to a 
leaf is the same

11

2 14

5 8

71

4 The problem 
has now shifted 

up the tree
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black 
children (a null reference is 
considered to refer to a black 
node)
1.The number of black nodes 
in any path from the root to a 
leaf is the same

11

2 14

5 8

71

4 Left-right tree:
Rotate left

about 2
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black 
children (a null reference is 
considered to refer to a black 
node)
1.The number of black nodes 
in any path from the root to a 
leaf is the same

11

7 14

51

82

4
Left-left tree:
swap colours

of 7 and 11
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black 
children (a null reference is 
considered to refer to a black 
node)
1.The number of black nodes 
in any path from the root to a 
leaf is the same

11

7 14

51

82

4
Left-left tree:
Rotate right

around 11
to restore

the balance
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has 
black children (a null 
reference is considered to 
refer to a black node)
3.The number of black nodes 
in any path from the root to a 
leaf is the same

7

2 11

14851

4



  

Top-down insertion

In bottom-up insertion, we sometimes 
need to move up the tree rebalancing and 
recolouring it after we insert an element
But this only happens if P and S are both 
red
Idea: as we go down the tree looking for 
the insertion point, rebalance and 
recolour the tree so that either P or S is 
black – that way we never need to move 
up the tree again after insertion!



  

Top-down insertion

If on the way down we come across a node X with 
two red children, colour-flip it immediately!

But what if X's parent is also red? We break the 
invariant!
Observation: X's parent's sibling must be black (or 
we would've colour-flipped them on the way down), 
so a single rotation + recolouring will fix the 
invariant!

Colour flip

L

X

BA

R

C D

L

X

BA

R

C D



  

Top-down insertion

Go down the tree as before
Whenever a node X has two red children, 
colour-flip; if X's parent P is red, use 
rotations and recolourings as before to fix it
● This is easy because P's sibling must be black

Insert the new node as usual, making it red; 
if the parent P is also red, use rotations and 
recolourings to fix it
● Again, P's sibling is black so we avoid the colour flip 

case



30

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has 
black children (a null 
reference is considered to 
refer to a black node)
3.The number of black nodes 
in any path from the root to a 
leaf is the same

11

2 14

5 8

71

Inserting 4,
we get to a node with

two red children:
colour flip!

We would've visited
5 next: remember it!
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black 
children (a null reference is 
considered to refer to a black 
node)
1.The number of black nodes 
in any path from the root to a 
leaf is the same

11

2 14

5 8

71

Left-right tree:
Rotate left

about 2
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black 
children (a null reference is 
considered to refer to a black 
node)
1.The number of black nodes 
in any path from the root to a 
leaf is the same

11

7 14

51

82

Left-left tree:
swap colours

of 7 and 11
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black 
children (a null reference is 
considered to refer to a black 
node)
1.The number of black nodes 
in any path from the root to a 
leaf is the same

11

7 14

51

82

Left-left tree:
Rotate right

around 11
to restore

the balance
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has 
black children (a null 
reference is considered to 
refer to a black node)
3.The number of black nodes 
in any path from the root to a 
leaf is the same

7

2 11

14851

The colour flip is
finished.

Now we continue
down and insert 4!
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Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has 
black children (a null 
reference is considered to 
refer to a black node)
3.The number of black nodes 
in any path from the root to a 
leaf is the same

7

2 11

14851

4

No need to go
up the tree 
afterwards



  

Red-black deletion

Use the normal BST deletion algorithm, 
which will end up removing a leaf from 
the tree
If the leaf is red, everything's fine
If the leaf is black, the invariant is broken
Idea: go down the tree, making sure that 
the current node is always red
Lots of special cases! See book 19.5.4.



  

Red-black versus AVL trees

Red-black trees have a weaker invariant 
than AVL trees (less balanced) – but still 
O(log n) running time
Advantage: less work to maintain the 
invariant (top-down insertion – no need to 
go up tree afterwards), so insertion and 
deletion are cheaper
Disadvantage: lookup will be slower if the 
tree is less balanced
● But in practice red-black trees are faster than AVL 

trees



  

2-3 trees

In a binary tree, each node has two children
In a 2-3 tree, each node has either 2 children (a 
2-node) or 3 (a 3-node)
A 2-node is a normal BST node:
● One data value x, which is greater than all values in the 

left subtree and less than all values in the right subtree

A 3-node is different:
● Two data values x and y
● All the values in the left subtree are less than x
● All the values in the middle subtree are between x and y
● All the values in the right subtree are greater than y



  

2-3 trees

An example of a 2-3 tree:



  

Why 2-3 trees?

To get a balanced BST we had to find 
funny invariants and define our 
operations in odd ways
With a 2-3 tree we have the invariant:
● The tree is always perfectly balanced

and we can maintain it!



  

Insertion into a 2-3 tree

Suppose we want to insert 4
First, find the right leaf node

7

2 11, 15

18, 20851 14

4 should go here



  

Insertion into a 2-3 tree

If it's a 2-node, turn it into a 3-node by 
adding the value!

7

2 11, 15

18, 2084, 51 14



  

Insertion into a 2-3 tree

Now suppose we want to insert 3.
Find the right leaf node

7

2 11, 15

18, 2084, 51 14

3 should go here



  

Insertion into a 2-3 tree

We now have a 4-node – not allowed!
Split it into two 2-nodes and attach them 
to the parent:

7

2 11, 15

18, 208
3, 

4, 5
1 14

But this is a 4-node!



  

Insertion into a 2-3 tree

7

2, 4 11, 15

18, 20851 143

4 goes here because
it was the middle

value before



  

Insertion into a 2-3 tree

Now suppose we want to add 19.
Find the right leaf node and add it

7

2, 4 11, 15

18, 20851 143

19 should go here



  

Insertion into a 2-3 tree

Now suppose we want to add 19.
Again, we have a 4-node – split it

7

2, 4 11, 15

18, 19, 
20

851 143

A 4-node



  

Insertion into a 2-3 tree

But now we have a 4-node one level 
above! Split that.

7

2, 4 11, 15, 
19

18851 143 20

A 4-node



  

Insertion into a 2-3 tree

Finally we have a 2-3 tree again.

7, 15

2, 4 11

18851 143 20

19



  

2-3 trees, summary

2-3 trees do not use rotation, unlike 
balanced BSTs
Instead, they keep the tree perfectly 
balanced and use splits when there is no 
room for a new node
Complexity is O(log n), as tree is 
perfectly balanced
Much simpler than e.g. red-black trees!
But implementation is annoying :(



  

B-trees

B-trees generalise 2-3 trees:
● In a B-tree of order k, a node can have k children
● Each non-root node must be at least half-full
● A 2-3 tree is a B-tree of order 3

1010 2222 3030 4040

1313 1515 1818 2020 3232 3535 3838

55 77 88 2626 2727 4242 4646



  

Why B-trees

B-trees are used for disk storage in databases:
● Hard drives read data in blocks of typically ~4KB
● For good performance, you want to minimise the number 

of blocks read
● This means you want: 1 tree node = 1 block
● B-trees with k about 1024 achieve this

1010 2222 3030 4040

1313 1515 1818 2020 3232 3535 3838

55 77 88 2626 2727 4242 4646



  

2-3-4 trees

A 2-3-4 tree is a B-tree of order 4

Example:



  

Red-black trees are 2-3-4 trees!

Any red-black tree is equivalent to a 2-3-4 
tree!
● A 2-node is a black node

x



  

Red-black trees are 2-3-4 trees!

Any red-black tree is equivalent to a 2-3-4 
tree!
● A 3-node is a black node with one red child

x

y

x

y



  

Red-black trees are 2-3-4 trees!

Any red-black tree is equivalent to a 2-3-4 
tree!
● A 4-node is a black node with two red children

x z

y



  

Surprise!

138 17

1NIL 6

NIL NIL

11NIL NIL 15NIL NIL 2522

NIL NIL

27

NIL NIL

Red-black trees are
just a fancy way of

representing a
2-3-4 tree using a

binary tree!



  

Exercise: check for yourself how the red-black tree 
operations correspond to 2-3-4 tree operations!

Red-black trees vs 2-3-4 trees
Red-black trees 2-3-4 trees
Black node with no red 
children

2-node

Black node with one red child 3-node
Black node with two red 
children

4-node

Add a red child to a black 
node

Change a 2-node to a 3-node

Add a red child to a red node 
with a black sibling and rotate

Change a 3-node to a 4-node

Colour change + rotate Split a 4-node



  

Summary

Red-black trees – normally faster than AVL trees 
because there is no need to go up the tree after 
inserting or deleting
● On the other hand, trickier to implement

2-3 trees: allow 2 or 3 children per node
● Possible to keep perfectly balanced
● Slightly annoying to implement

B-trees: generalise 2-3 trees to k children
● If k is big, the height is very small – useful for on-disk 

trees e.g. databases

Red-black trees are 2-3-4 trees in disguise!
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