
Red-black trees (19.5),
B-trees (19.8),

2-3-4 trees

Red-black trees

A red-black tree is a balanced BST
It has a more complicated invariant than
an AVL tree:
● Each node is coloured red or black
● A red node cannot have a red child
● In any path from the root to a null, the number

of black nodes is the same
● The root node is black

Implicitly, a null is coloured black

A red-black tree

8

13

15

161410

1196

75

2

31

4

12

Not red-black trees – why?

8

13

15

104

11

8

13

15

104

13

15

13

158

9

Red-black trees – invariant

If the shortest
path has k nodes
(all black)...

...then the longest
path can only have
2k nodes

“A red node cannot have
a red child”

“In each path from the
root to a leaf, the number

of black nodes is the same”

Maximum height
2 log n,

where n is number
of nodes

Maintaining the red-black invariant

In AVL trees, we maintained the
invariant by rotating parts of the tree
In red-black trees, we use two operations:
● rotations
● recolouring: changing a red node to black or vice

versa

Recolouring is an “administrative”
operation that doesn't change the
structure or contents of the tree

AVL versus red-black trees

To insert a value into an AVL tree:
● go down the tree to find the parent of the new node
● insert a new node as a child
● go up the three, rebalancing

...so two passes of the tree (down and up)
required in the worst case
In a red-black tree:
● go down the tree to find the parent of the new node...
● ...but rebalance and recolour the tree as you go down
● after inserting, no need to go up the tree again

Red-black insertion

First, add the new node as in a BST,
making it red

If the new node's parent is black,
everything's fine

P P

X
... ...

Red-black insertion

If the parent of the new node is red, we
have broken the invariant. (How?) We
need to repair it.
We need to consider several cases.
In all cases, since the parent node is red,
the grandparent is black. (Why?)
Let's take the case where the parent's
sibling is black.

Left-left tree (“outside grandchild”)

X

P

C

G

BA

S

ED

X: Newly-inserted
node, breaks invariant

P: Parent of
new node

G: Grandparent of
new node

S: Sibling of
parent

Left-left tree (“outside grandchild”)

X

P

C

G

BA

S

D

Recolouring

E

Now the number of
black nodes in each
path has changed –

but right rotation
will fix it

X

P

C

G

BA

S

D E

Left-left tree (“outside grandchild”)

X

P

C

G

BA

S

D

Right rotation
and recolouring

X

P

C

G

BA S

ED

E

Why does this
now satisfy the

invariant?

X < P < G < S

Left-right tree (“inside grandchild”)

X

P

A

G

CB

S

D

Left rotation of P

E

X

P

A

G

C

B

S

D E

Now we have a
left-left tree!

We know how to
fix that already.

P < X < G < S

Left-right tree (“inside grandchild”)

Right rotation
and recolouring

P

X

C

G

BA S

ED

X

P

A

G

C

B

S

D E

Insert the new node as in a BST, make it
red
Problem: if the parent is red, the
invariant is broken (red node with red
child)
To fix a red node with a red child:
● If the node has a black sibling, rotate and

recolour
● If the node has a red sibling, …? Two approaches,

bottom-up (simpler) and top-down (more efficient)

Summary so far

Bottom-up insertion

If a new node, its parent and its parent's
sibling are all red: do a colour flip
● Make the parent and its sibling black, and the

grandparent red

Colour flip

P

X

G

C

B

S

D E

A

P

X

G

C

B

S

D E

A

Bottom-up insertion

A colour flip almost restores the
invariant...
...but if G has a red parent, we will have a
red node with a red child
So move up the tree to G and apply the
same double-red repair process there as
we did to X.

Bottom-up insertion

Insert the new node as in a BST, make it red
If the new node has a red parent P:
● If the parent's sibling S is black, use rotations and

recolourings to fix it – the rotations are the same as
in an AVL tree

● If S is red, do a colour flip, which makes the
grandparent G red – so you need to do the same
double-red repair to G if its parent is red

Lastly: if you get to the root and the root is
red, make it black

19

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has
black children (a null
reference is considered to
refer to a black node)
3.The number of black nodes
in any path from the root to a
leaf is the same

11

2 14

5 8

71

20

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black
children (a null reference is
considered to refer to a black
node)
1.The number of black nodes
in any path from the root to a
leaf is the same

11

2 14

5 8

71

4

21

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black
children (a null reference is
considered to refer to a black
node)
1.The number of black nodes
in any path from the root to a
leaf is the same

11

2 14

5 8

71

4 Colour
flip!

22

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black
children (a null reference is
considered to refer to a black
node)
1.The number of black nodes
in any path from the root to a
leaf is the same

11

2 14

5 8

71

4 The problem
has now shifted

up the tree

23

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black
children (a null reference is
considered to refer to a black
node)
1.The number of black nodes
in any path from the root to a
leaf is the same

11

2 14

5 8

71

4 Left-right tree:
Rotate left

about 2

24

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black
children (a null reference is
considered to refer to a black
node)
1.The number of black nodes
in any path from the root to a
leaf is the same

11

7 14

51

82

4
Left-left tree:
swap colours

of 7 and 11

25

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black
children (a null reference is
considered to refer to a black
node)
1.The number of black nodes
in any path from the root to a
leaf is the same

11

7 14

51

82

4
Left-left tree:
Rotate right

around 11
to restore

the balance

26

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has
black children (a null
reference is considered to
refer to a black node)
3.The number of black nodes
in any path from the root to a
leaf is the same

7

2 11

14851

4

Top-down insertion

In bottom-up insertion, we sometimes
need to move up the tree rebalancing and
recolouring it after we insert an element
But this only happens if P and S are both
red
Idea: as we go down the tree looking for
the insertion point, rebalance and
recolour the tree so that either P or S is
black – that way we never need to move
up the tree again after insertion!

Top-down insertion

If on the way down we come across a node X with
two red children, colour-flip it immediately!

But what if X's parent is also red? We break the
invariant!
Observation: X's parent's sibling must be black (or
we would've colour-flipped them on the way down),
so a single rotation + recolouring will fix the
invariant!

Colour flip

L

X

BA

R

C D

L

X

BA

R

C D

Top-down insertion

Go down the tree as before
Whenever a node X has two red children,
colour-flip; if X's parent P is red, use
rotations and recolourings as before to fix it
● This is easy because P's sibling must be black

Insert the new node as usual, making it red;
if the parent P is also red, use rotations and
recolourings to fix it
● Again, P's sibling is black so we avoid the colour flip

case

30

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has
black children (a null
reference is considered to
refer to a black node)
3.The number of black nodes
in any path from the root to a
leaf is the same

11

2 14

5 8

71

Inserting 4,
we get to a node with

two red children:
colour flip!

We would've visited
5 next: remember it!

31

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black
children (a null reference is
considered to refer to a black
node)
1.The number of black nodes
in any path from the root to a
leaf is the same

11

2 14

5 8

71

Left-right tree:
Rotate left

about 2

32

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black
children (a null reference is
considered to refer to a black
node)
1.The number of black nodes
in any path from the root to a
leaf is the same

11

7 14

51

82

Left-left tree:
swap colours

of 7 and 11

33

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
•The root is always black
•A red node always has black
children (a null reference is
considered to refer to a black
node)
1.The number of black nodes
in any path from the root to a
leaf is the same

11

7 14

51

82

Left-left tree:
Rotate right

around 11
to restore

the balance

34

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has
black children (a null
reference is considered to
refer to a black node)
3.The number of black nodes
in any path from the root to a
leaf is the same

7

2 11

14851

The colour flip is
finished.

Now we continue
down and insert 4!

35

Insättning, ett enkelt exempel
Invariants:
•A node is either red or black
1.The root is always black
2.A red node always has
black children (a null
reference is considered to
refer to a black node)
3.The number of black nodes
in any path from the root to a
leaf is the same

7

2 11

14851

4

No need to go
up the tree
afterwards

Red-black deletion

Use the normal BST deletion algorithm,
which will end up removing a leaf from
the tree
If the leaf is red, everything's fine
If the leaf is black, the invariant is broken
Idea: go down the tree, making sure that
the current node is always red
Lots of special cases! See book 19.5.4.

Red-black versus AVL trees

Red-black trees have a weaker invariant
than AVL trees (less balanced) – but still
O(log n) running time
Advantage: less work to maintain the
invariant (top-down insertion – no need to
go up tree afterwards), so insertion and
deletion are cheaper
Disadvantage: lookup will be slower if the
tree is less balanced
● But in practice red-black trees are faster than AVL

trees

2-3 trees

In a binary tree, each node has two children
In a 2-3 tree, each node has either 2 children (a
2-node) or 3 (a 3-node)
A 2-node is a normal BST node:
● One data value x, which is greater than all values in the

left subtree and less than all values in the right subtree

A 3-node is different:
● Two data values x and y
● All the values in the left subtree are less than x
● All the values in the middle subtree are between x and y
● All the values in the right subtree are greater than y

2-3 trees

An example of a 2-3 tree:

Why 2-3 trees?

To get a balanced BST we had to find
funny invariants and define our
operations in odd ways
With a 2-3 tree we have the invariant:
● The tree is always perfectly balanced

and we can maintain it!

Insertion into a 2-3 tree

Suppose we want to insert 4
First, find the right leaf node

7

2 11, 15

18, 20851 14

4 should go here

Insertion into a 2-3 tree

If it's a 2-node, turn it into a 3-node by
adding the value!

7

2 11, 15

18, 2084, 51 14

Insertion into a 2-3 tree

Now suppose we want to insert 3.
Find the right leaf node

7

2 11, 15

18, 2084, 51 14

3 should go here

Insertion into a 2-3 tree

We now have a 4-node – not allowed!
Split it into two 2-nodes and attach them
to the parent:

7

2 11, 15

18, 208
3,

4, 5
1 14

But this is a 4-node!

Insertion into a 2-3 tree

7

2, 4 11, 15

18, 20851 143

4 goes here because
it was the middle

value before

Insertion into a 2-3 tree

Now suppose we want to add 19.
Find the right leaf node and add it

7

2, 4 11, 15

18, 20851 143

19 should go here

Insertion into a 2-3 tree

Now suppose we want to add 19.
Again, we have a 4-node – split it

7

2, 4 11, 15

18, 19,
20

851 143

A 4-node

Insertion into a 2-3 tree

But now we have a 4-node one level
above! Split that.

7

2, 4 11, 15,
19

18851 143 20

A 4-node

Insertion into a 2-3 tree

Finally we have a 2-3 tree again.

7, 15

2, 4 11

18851 143 20

19

2-3 trees, summary

2-3 trees do not use rotation, unlike
balanced BSTs
Instead, they keep the tree perfectly
balanced and use splits when there is no
room for a new node
Complexity is O(log n), as tree is
perfectly balanced
Much simpler than e.g. red-black trees!
But implementation is annoying :(

B-trees

B-trees generalise 2-3 trees:
● In a B-tree of order k, a node can have k children
● Each non-root node must be at least half-full
● A 2-3 tree is a B-tree of order 3

1010 2222 3030 4040

1313 1515 1818 2020 3232 3535 3838

55 77 88 2626 2727 4242 4646

Why B-trees

B-trees are used for disk storage in databases:
● Hard drives read data in blocks of typically ~4KB
● For good performance, you want to minimise the number

of blocks read
● This means you want: 1 tree node = 1 block
● B-trees with k about 1024 achieve this

1010 2222 3030 4040

1313 1515 1818 2020 3232 3535 3838

55 77 88 2626 2727 4242 4646

2-3-4 trees

A 2-3-4 tree is a B-tree of order 4

Example:

Red-black trees are 2-3-4 trees!

Any red-black tree is equivalent to a 2-3-4
tree!
● A 2-node is a black node

x

Red-black trees are 2-3-4 trees!

Any red-black tree is equivalent to a 2-3-4
tree!
● A 3-node is a black node with one red child

x

y

x

y

Red-black trees are 2-3-4 trees!

Any red-black tree is equivalent to a 2-3-4
tree!
● A 4-node is a black node with two red children

x z

y

Surprise!

138 17

1NIL 6

NIL NIL

11NIL NIL 15NIL NIL 2522

NIL NIL

27

NIL NIL

Red-black trees are
just a fancy way of

representing a
2-3-4 tree using a

binary tree!

Exercise: check for yourself how the red-black tree
operations correspond to 2-3-4 tree operations!

Red-black trees vs 2-3-4 trees
Red-black trees 2-3-4 trees
Black node with no red
children

2-node

Black node with one red child 3-node
Black node with two red
children

4-node

Add a red child to a black
node

Change a 2-node to a 3-node

Add a red child to a red node
with a black sibling and rotate

Change a 3-node to a 4-node

Colour change + rotate Split a 4-node

Summary

Red-black trees – normally faster than AVL trees
because there is no need to go up the tree after
inserting or deleting
● On the other hand, trickier to implement

2-3 trees: allow 2 or 3 children per node
● Possible to keep perfectly balanced
● Slightly annoying to implement

B-trees: generalise 2-3 trees to k children
● If k is big, the height is very small – useful for on-disk

trees e.g. databases

Red-black trees are 2-3-4 trees in disguise!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

