
Exam
Data structures DIT960/DAT036

Time Monday 26th May 2014, 14:00–18:00

Place Hörsalsvägen

Course responsible Nick Smallbone, tel. 0707 183062

The exam consists of six questions. Some of the questions have parts marked 
for VG, which you should only answer if you are trying for a VG.

For Godkänd you need to answer at least three questions correctly.
You do not need to answer any VG-only parts.

For Väl Godkänd you need to answer at least five questions correctly.
You must also answer the VG-only parts of those questions.

For Chalmers students: a G corresponds to a 3, and a VG to a 5. To get a 4, you
must answer four questions correctly, including any VG-only parts.

Allowed aids One A4 piece of paper of hand-written notes.
You may write on both sides.

You may also bring a dictionary.

Note Begin each question on a new page.

Write your anonymous code (not your name) on every page.

Excessively complicated answers might be rejected.

Write legibly!



1. Consider the following algorithm that sorts a list of n elements by using a
binary search tree:

initialise t to be an empty binary search tree
for each element x in the list,
    add x to t
while t is not empty,
    remove and print the smallest element of t

What is the worst-case time complexity of this algorithm, if the tree is 
implemented using:

a) an ordinary binary search tree?

b) an AVL tree?

You may assume that printing out a value takes constant time.

Recall that you can find the smallest value in a binary search tree by 
starting at the root and following the left child until you find a node 
without a left child – this is the node with the smallest value.



2. Your task is to implement a map from keys to values in Haskell using a 
binary search tree. Your solution should define a type BSTMap k v that 
represents a map from keys k to values v, together with two functions:

data BSTMap k v = …
lookup :: Ord k => k -> BSTMap k v -> Maybe v
update :: Ord k => k -> v -> BSTMap k v -> BSTMap k v

The lookup function looks up a key in the map, while update adds a 
key/value pair to the map, or updates the value if the key already exists in
the map.

You may like to start from the following Haskell code which implements 
a set using a binary search tree.

data BST a = Empty 
           | Node a (BST a) (BST a)

member :: Ord a => a -> BST a -> Bool
member x Empty = False
member x (Node a left right) 
  | x < a = member x left
  | x > a = member x right
  | otherwise = True

insert :: Ord a => a -> BST a -> BST a
insert x Empty = Node x Empty Empty
insert x (Node a left right)
  | x < a = Node a (insert x left) right
  | x > a = Node a left (insert x right)
  | otherwise = Node x left right



3. Design a data structure for storing a set of integers. It should support the 
following operations:

◦ new: create a new, empty set

◦ insert: add an integer to the set

◦ member: test if a given integer is in the set

◦ delete: delete an integer from the set

◦ deleteOdd: delete all odd numbers from the set

You may use existing standard data structures as part of your 
solution – you don't have to start from scratch.

Write down the data structure or design you have chosen, plus 
pseudocode showing how the operations would be implemented. The
operations must have the following time complexities:

◦ For G:
O(1) for new,
O(log n) for insert/member/delete,
O(n log n) for deleteOdd
(where n is the number of elements in the set)

◦ For VG:
as for G but deleteOdd must take O(1) time



4. Suppose you have the following hash table, implemented using linear 
probing. The hash function we are using is the identity function, h(x) = x.

0 1 2 3 4 5 6 7 8

9 18 12 3 14 4 21

a) In which order could the elements have been added to the hash table? 
There are several correct answers, and you should give all of them.

A  9, 14, 4, 18, 12, 3, 21

B  12, 3, 14, 18, 4, 9, 21

C  12, 14, 3, 9, 4, 18, 21

D  9, 12, 14, 3, 4, 21, 18

E  12, 9, 18, 3, 14, 21, 4

b) Remove 3 from the hash table, and write down how it looks 
afterwards.



5. You are given the following weighted graph:

a) Suppose we perform Dijkstra's algorithm starting from node H. In 
which order does the algorithm visit the nodes, and what is the 
computed distance to each of them? There are several possible orders 
the algorithm might visit the nodes in – you may choose any of them.

b) Use Prim's algorithm to construct a minimum spanning tree for the 
graph, starting from a node of your choice, and draw the tree.



6. A double-ended priority queue is a priority queue that supports removing
both the minimum and the maximum element. It provides the following 
operations:

◦ insert – add an element to the priority queue

◦ findMin/deleteMin – find or delete the minimum element

◦ findMax/deleteMax – find or delete the maximum element

While writing a program, you discover you need a double-ended priority 
queue. Your friend suggests a way to implement one:

Maintain two priority queues, one of them a min heap and the 
other a max heap1. To insert an item, insert it into both heaps.
To implement findMin/deleteMin simply call findMin/deleteMin 
on the min heap. To implement findMax/deleteMax call 
findMax/deleteMax on the max heap.

The following Java code illustrates the idea:

MinHeap minheap = new MinHeap();
MaxHeap maxheap = new MaxHeap();
void insert(E x) { minheap.insert(x); maxheap.insert(x); }
E findMin() { return minheap.findMin(); }
E findMax() { return maxheap.findMax(); }
void deleteMin() { minheap.deleteMin(); }
void deleteMax() { maxheap.deleteMax(); }

Unfortunately, this idea does not work. Once you see why, write down an
example where this design would give the wrong answer.

For VG:

A min-max heap is a binary tree with the following invariant:

• The value of any node at an even level in the tree is less than or 
equal to all values in the node's subtree;

• the value of any node at an odd level in the tree is greater than or 
equal to all values in the node's subtree.

1 Recall that a max heap supports the operations insert, findMax and deleteMax.
A min heap is an ordinary binary heap and supports insert, findMin and deleteMin.



The level of a node is defined as follows: the root of the tree is at level 0, 
its children are at level 1, its grandchildren are at level 2, and so on.

Describe how to find the minimum and maximum elements in a min-max
heap. Make sure you consider the case where the heap has one element. 
You do not have to worry about insertion or deletion, only 
findMin/findMax.
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