
Exam
Data structures DIT960

Time Friday 5h June 2015, 14:00–18:00

Place Väg och vatten

Course responsible Nick Smallbone, tel. 0707 183062

The exam consists of six questions.

For a G, you need to answer three questions correctly.
You can ignore any parts labelled “VG”.

For a VG, you need to answer five questions correctly.
You must also answer all parts labelled “For a VG” in those questions.

For an answer to be considered correct, it must contain no major mistakes.
Minor mistakes might be accepted, but this is at the discretion of the marker.

When a question asks for pseudocode, you can use a mixture of English and
programming notation to describe your solution, and should give enough detail
that a competent programmer could easily implement your solution.

Allowed aids One A4 piece of paper of hand-written notes, which should be
handed in after the exam. You may write on both sides.

You may also bring a dictionary.

Note Begin each question on a new page.

Write your anonymous code (not your name) on every page.

Good luck!

1. The following algorithm takes as input an array which may contain
duplicates. It returns true if all elements of the array occur an odd
number of times. Otherwise it returns false.

For example, on the array {1, 3, 2, 2, 5, 2} it returns true, but on
the array {1, 3, 2, 2, 5, 2, 5} it returns false because 5 occurs an
even number of times.

S = new AVL tree
for every element x in input array
 if S.member(x)
 S.delete(x)
 else
 S.insert(x)
// At this point, S contains those elements that
// occur an odd number of times

for every element x in input array
 if not S.member(x)
 return false
return true

Assuming that n is the length of the input array, what is the big-O
complexity of this algorithm?

2. Which array out of A, B and C represents a binary heap? Only one
answer is right.

0 1 2 3 4 5 6 7 8 9 10 11

A = 1 12 23 10 15 38 45 15 18 20 21
0 1 2 3 4 5 6 7 8 9 10 11

B = 1 8 27 10 45 83 91 31 12 52 51
0 1 2 3 4 5 6 7 8 9 10 11

C = 1 13 20 21 65 54 67 41 30 83 52

a) Write the heap out as a binary tree.

b) Add 23 to the heap, making sure to restore the heap invariant. How does
the array look now?

3. Design an algorithm that takes:

• An array containing n distinct natural numbers

• A number k ≤ n

and calculates the sum of the k largest numbers in the array.

For example, if the array is {3, 7, 5, 12, 6} and k = 3, then the
algorithm should return 25 (12+7+6).

You may freely use standard data structures and algorithms from the
course in your solution, without explaining how they are implemented.

Write down your algorithm as pseudocode – you don't need to write fully
detailed Java code.

For a G: your algorithm should take O(n log n) time.

For a VG: your algorithm should take O(n log k) time.

4. Design a data structure for storing a set of integers. It should support the
following operations:

◦ new(): create a new, empty set

◦ insert(x): add an integer x to the set

◦ member(x): test if a given integer x is in the set

◦ increaseBy(x): add x to all the integers in the set

For example, calling increaseBy(2) on a set containing the values
1,2,3,4,5 should give a set containing the values 3,4,5,6,7.

You may freely use standard data structures and algorithms from the
course in your solution, without explaining how they are implemented.

You should say what design or existing data structure you have chosen,
and give pseudocode for each of the operations – you don't need to write
fully detailed Java code.

The operations must have the following time complexities:

◦ For a G:
O(1) for new,
O(log n) for insert/member,
O(n) for increaseBy
(where n is the number of elements in the set)

◦ For a VG:
as for G but the complexity of increaseBy must be O(1).

5. You are given the following binary search tree.

a) Colour the nodes of the tree red and black so that it becomes a valid red-
black tree. If you don't have a coloured pen, you could e.g. draw a circle
for red nodes and a square for black nodes.

b) Insert 60 into the tree using the red-black insertion algorithm. Write
down the final tree.

6. Suppose we are given the following type of binary search trees in Haskell:

data Tree a = Nil | Node a (Tree a) (Tree a)

a) Implement a Haskell function

greatest :: Ord a => Tree a -> a

that returns the greatest element in a non-empty binary search tree (in an
empty binary search tree it is allowed to crash).

The complexity of your function should be O(height of tree), i.e.,
O(log n) for balanced trees, O(n) for unbalanced trees.

b) For VG only:
Write a Haskell function to delete an element. It should take two
parameters, which are the element to delete and the tree, and have the
following type:

delete :: Ord a => a -> Tree a -> Tree a

The complexity of your function should be O(height of tree), i.e.,
O(log n) for balanced trees, O(n) for unbalanced trees.

Hint: it will help to use greatest when implementing delete.

	Exam
	Data structures DIT960

