
Generics
Slide Series 8

Content

Generic types and methods, type inference
(Bounded) Type parameters
Parameterized types
Variance for Generics
(Bounded) Wildcards
Generic type compatibility
Restrictions
Reifiable types and type erasure
Visitor DP, Generic Iterator
Reflection

Generic Programming

 "...to operate on objects of various types [but same]
while providing compile-time type safety."
// Wikipedia

Very familiar from Haskell

// Doesn't mention any specific element type

data List a = Nil | Cons a (List a)

length :: List a -> Int
length Nil = 0
length (Cons _ t) = 1 + length t

Generics in Java

 No generics in original Java, added to Java 1.5
● Possible have a mixture of non-generic and generic

code (avoid, warning)
● Java collection framework 1.5 completely rewritten to

generic types, List<String>, List<Integer>
● Have generic classes, interfaces, constructors and

methods (no generic enum types, anonymous inner
classes or exception classes)

● Interesting effects on type system (may affect your
mental health) … more to come...

Usage Generics

Normally
● Use of Java generic (and other) API's in particular the

Collections framework. Easy

Advanced topics
● Implement flexible reusable collections and API's
● Implement frameworks (semi-implemented

applications). Sometimes in combination reflection
(meta programming, upcoming ...), hard

Type Variable

 "A type variable is an unqualified identifier used as a
type in class, interface, method, and constructor bodies."

//JLS 4.4

Type variable traditionally single upper case; T, E, ...

Generic Class*

 "A class [interface] is generic if it declares one or more
type variables"// JLS 8.1.2

// Type variables

public class MyClass<T, E> { // Type parameter section

private final T t1; // Attribute of type T

public T doIt(E t){ // Parameter type E return type T

}

}

Combination static and T not permitted in generic class
(but possible for generic method, upcoming...)

Parameterized Type

"A generic class or interface declaration C (§8.1.2, §9.1.2) with one or more
type parameters A1 ...defines a set of parameterized types, one for each
possible invocation of the type parameter section."

"A parameterized type is written as a ClassType or InterfaceType that
contains at least one type declaration specifier immediately followed by a
type argument list . The type argument list denotes a particular invocation of
the type parameters of the generic type indicated by the type declaration
specifier".// JLS 4.5

// Parameterized type (concrete instantiation of

// generic type)

List<String> strs =

// Parameterized type
List<List<String>> strs =

// Bad, primitive types not allowed
List<int> ints =

Generic Interface*

// Generic interface

public interface IA<T> {

public T doIt();

}

// Non-generic implementation (using parameterized type)

public class MyClass implements IA<String> {

public String doIt();

}

// Generic implementation

public class MyClass<T> implements IA<T> {

public T doIt(){ ...}

}

Generic and Inheritance*

Many possibilities/variations, ..
● Should subclasses be generic too?
● See code samples

Generic Methods*

Generic methods are methods that introduce their own
type parameters before the return type.
Type parameter's scope is limited to the method where it
is declared

// Non-generic class (generic also possible)

public class MyClass {

 public <A> void doIt(A a) { ... }

 public static <A> A max(Collection<A> xs) { ... }

}

Invocation of Generic Methods*

Type arguments need not be provided explicitly, almost
always automatically inferred

// Generic method (note: static ok)

public static <A> A max (Collection<A> xs) {...}

// Invocation

List<Long> list = ...;
list.add(0L);
list.add(1L);
Long y = SomeClass.max(list); // Type inferred

(If problem supply type: SomeClass.<theType>max(list))

Type Inference for Generic Methods*

Compiler tries to infer the most specific types that makes
the call type safe
● Using parameter or return types (or both)
● Sometimes counterintuitive!

Generic Constructor

Constructors can be generic (declare their own formal
type parameters) in both generic and non-generic
classes

// Generic class

public class MyClass<X> {

// Generic constructor
 <T> MyClass(T t) {
 ...
 }
}

// Will infer X as Integer and T as String (Java 7)

MyClass<Integer> myObject = new MyClass<>("")

Remainder: Type Variable vs
Parameterized Type

Type variable
● Used at declaration of class, interface , method or

constructor
public class MyClass<T>

public <T> int count(T t)

Parameterized type
● Used for variables, methods arguments and return

types

public List<Integer> getList();

public void print(List<String> strs);

Bounded Type Variable

"Every type variable declared as a type parameter [type
variable] has a bound. If no bound is declared for a type
variable, Object is assumed. If a bound is declared, it
consists of either:
● a single type variable T , or
● a class or interface type T possibly followed by

interface types I1 & ... & In." // JLS 4.4

A bounds is a restriction on the type parameter

Bound set by keyword extends

Examples: Bounded Type Variables*

// T is a subtype of Number (Number is the bound)

public class Calculator<T extends Number> { ... }

// T must implement Comparable<T>

public interface IMinMax<T extends Comparable<T>> { ... }

// Any subclass to MyClass that implements Serializble

public <T extends MyClass & Serializable>

Variance More Formally

Covariance
● if A :> B and and f(A) :> f(B) for some conversion

operator f (for example []) then f is covariant
(preserves ordering of types)

Contra variance
● if A :> B and and f(A) <: f(B) for some conversion

operator f (for example []) then f is covariant (reverses
ordering of types)

Invariance, neither of above

Wildcards

Parameterize types may have "wildcards" as type
argument
● Wildcard written as: ? (questionmark)
● Wildcard represents the unknown type (not any type)
● Wildcards may have a bound (one only)
● A type variable T denotes the same but not known

type, wildcard does not denote the same (more ? will
possible stand for different types)

// Parameterized type with wildcard as type argument

Collection<?> coll = new ArrayList<>();

Usage: Wildcards

Wildcards are useful in situations where only partial
knowledge about the type parameter is required."
// JLS 4.5.1

// Using the wildcard '?', a Collection of unknown

public void printAny(Collection<?> c) {

for (Object o : c) { // This is what we can assume

System.out.println(o); // Call Object.toString()

}

}

Note: This is not the same as Collection<Object>, Object
is a known type! Q: Why not just use subtypes?...

Answer: Generics and Variance

Generics are not covariant (they are invariant)!
if S :> T then C<S> not :> C<T> (C any type)

// Assume method

public void printAny(List<Object> c) {...}

// Can't use anything but List<Object>

// even though Object:> String

List<String> s = ...

printAny(s); // No! List<String> not compatible!

Bounded Wildcards*

Bound set by keyword extends or super (can't have both
at the same time)

// List contains unknown subtype of number. Upper bound

List<? extends Number> nlist;

// List contains unknown supertype of Integer. Lower bound

List<? super Integer> ilist;

 super is highly unintuitive...

Wildcard Extends vs Super

MyClass

Object

?

?

?

?

?

? ?

? extends MyClass

? super MyClass

Any class
compatible
with MyClass

No class
compatible
with MyClass

?

Bounded wildcards gives type safe
variance*

// Array loop hole, Object[] :> String[] ([] is covariant)

String[] strings = new String[1];

Object[] objects = strings;

objects[0] = new Integer(1); // Oh, oh

String s = strings[0].substring(0); // The array loophole!!

// No hole with generic types List<Object> not :> List<String>

// (no covariance)

List<String> slist = new ArrayList<>();
//List<Object> olist = slist; // No!

// Ok, ...
List<? extends Object> olist2 = slist;
// ... but can just treat elements as Objects
// s = olist2.get(0); // No!

Object o = olist2.get(0); // Ok!

Super-subset relationships for
Wildcards bounds

 A super-subtype relationship between upper bounds
leads to a super-subset relationship between the
resulting upper bound wildcards, and vice versa for a
lower bounds

● The unbounded wildcard "?" denotes the set of all types and is the
superset of all sets denoted by bounded wildcards.

● A wildcard with an upper bound (extends) A denotes a superset of
another wildcard with an upper bound B, if A is a super type of B.

● A wildcard with a lower bound A denotes a subset of another wildcard
with a lower bound B, if A is a subtype of B.

● A concrete type denotes a set with only one element, namely the type
itself.

Super-subset relationships for
Wildcards bounds? cont. cont.

A second illustration of previous, previous slide (A:>B)

<? extends A>

<? extends B>

<A>

<? super B>

<? super A><A>

Super subtype chain

Super-subset relationships for
Wildcards bounds, cont.

Illustration of previous slide A :> B

<? extends A>

<? extends B>

<? super A>

<? super B>

<A>

super B

extends A

super A

extends B

Example Super-subset

<?> is superset of all bounded wildcard sets

<? extends Serializable> (subset of the above)

// Relation of bounds: Serializable :> Number ...

<? extends Number> (... so subset of above)

<Number> (subset of above)

Generics and Type Compatibility*

 Thanks to Angelika Langer
1. As long as the type arguments are identical, the inheritance relationship

among generic types leads to a super- subtype relationship among
corresponding parameterized types (Collection<Long> :> List<Long>)

2. Super-subset relationship based on the type arguments (at least one of
the involved type arguments is a wildcard)

Collection<? extends Number> Collection<Long>

Both effects - the super-subtype relationship due to inheritance and the
super-subset relationship due to type arguments - are combined and lead
to a two-dimensional super-subtype relationship table see Angelika Langer

Note: There are possible more type parameters and also multi level
wildcards, yum, yum,

http://www.angelikalanger.com/GenericsFAQ/FAQSections/TechnicalDetails.html#Type%20System

Raw Type

Mixing non-generic and generic code, should be
avoided!

// Using generic type List<T> in non-parameterized fashion

List l = ... // List as raw type

// Compatibility, raw type super type to any parameterized

List :> List<...>

// And also...

List<?> :> List

Examples: Type Compatibility

// Extends. Assume A and B implements Able

Collection<? extends Able> :> Collection<A>

Collection<? extends Able> :> Collection

// Super

List<? super Integer> :> List<Number>

List<? super Integer> :> List<Object>

 This lead to amazing restrictions ...

Restrictions on Collections with
bounded Wildcards*

? extends T
● Can't add anything except null!
● Can read type of bound (T, so no problem)

? super T
● Can only add type of bound (T), subclass of bound or

null
● Can only read Object

Bounded Wildcards as Return Type

“It is sometimes tempting to use a bounded wildcard in the return type of a
method. But this temptation is best avoided because returning bounded
wildcards tends to "pollute" client code. If a method were to return a Box<?
extends T>, then the type of the variable receiving the return value would
have to be Box<? extends T>, which pushes the burden of dealing with
bounded wildcards on your callers. Bounded wildcards work best when
they are used in APIs, not in client code.”

// Someone

Capture of Wildcard

 "What is the capture of a wildcard?
An anonymous type variable that represents the particular unknown type
that the wildcard stands for. The compiler uses the capture internally for
evaluation of expressions and the term "capture of ?" occasionally shows up
in error message." // Angelika Langer

error: equalTo(Box<capture#1 of ?>) in Box<capture#2 of ?>
cannot be applied to (Box<capture#3 of ?>)
equal = unknownBox.equalTo(unknownBox)

This is a type error, compiler tries to find types for ? but
fails. You have a type error!

Wildcard Capture*

This is different from previous slide!

Allowing a type variable to be instantiated to a wildcard
● I.e. Set<?> accepted for Set<T>
● Normally an unsafe conversion but compiler can

judge if it's safe in some special cases

Generic Method vs Generic Class

Generic methods allow type parameters to be used to
express dependencies among the types of one or more
arguments to a method and/or its return type. If there
isn't such a dependency, a generic method should not be
used

// Ok, express dependencies between params
public class Collections {
 public static <T> void copy(List<T> dest, List<?

 extends T> src){
 ...

 }
 ...

Type Erasure

During compilation generic types are erasured
● The erasure of a parameterized type (§4.5) G is |G|.
● The erasure of a nested type T.C is |T|.C.
● The erasure of an array type T[] is |T|[].
● The erasure of a type variable (§4.4) is the erasure of

its leftmost bound.
● The erasure of every other type is the type itself.

So List<String> becomes List (there's just one class
shared by all parameterized types)

Reifiable Types

"Because some type information is erased during
compilation, not all types are available at run time. Types
that are completely available at run-time are known as
reifiable types.
A type is reifiable if and only if one of the following holds
● It refers to a non-generic class or interface type

declaration
●" // JLS 4.7

Baaad news! Generics gone after compilation

What's Happening?*

A lot happens in background
● All type parameters replaced by their bounds
● Compiler inserts cast to preserve type safety
● Compiler possible generates bridge methods to

preserve polymorphism in extended generic types

Many restriction for the programmer...
● Java has got a lot of criticism for the implementation

of generics
● Cause: Backward compatibility

Type Erasure: Consequences*

1. Cannot create Instances of type parameters
2. Cannot declare static fields whose types are type

parameters
3. Cannot use casts and instanceof with parameterized

types
4. Cannot create arrays of parameterized types
5. Cannot create, catch, or throw objects of

parameterized types
6. Cannot overload a method where the formal

parameter types of each overload erase to the same
raw type

Arrays and Generics*

Generic arrays forbidden (except <?>)

Doesn't work well together
● Arrays covariant, generics not
● Arrays reifiable, generic not
● .. don't mix (i.e. use Collection, List, Set...)

Override and Overload*

Overload possible but have to check erasure
● Possible same parametertypes after erasure, so same

signature, compile error
● Some subtleties ...

Override possible
● Subtleties ...

Canonical Form*

Equals no problems

Clone must use reflection (upcoming...)

Pattern Matching

Pattern matching is a powerful feature

// Have this in Haskell, how to in Java?

data Tree t = Leaf | Node t (Tree t) (Tree t)
 deriving (Eq,Ord,Show)

myTree = (Node 12 (Node 11 Leaf Leaf) (Leaf))

sumTree:: Tree t -> int
sumTree Leaf = 0
sumTree (Node a t1 t2) = a + sumTree(t1) + sumTree(t2)

Visitor*

One possible implementation of pattern matching
(separating an algorithm from an object structure on
which it operates)

Reflection

"In computer science, reflection is the ability of a
computer program to examine (see type introspection)
and modify the structure and behavior (specifically the
values, meta-data, properties and functions) of an object
at runtime". // Wikipedia

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Type_introspection
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)

Java Reflection API

The java.lang.Class<T> object
Class has no public constructor. Instead Class objects are constructed
automatically by the Java Virtual Machine as classes are loaded and by calls
to the defineClass method in the class loader [we will not talk about class
loaders].

Classes from java.lang.reflect package
● Field, Method, Constructor<T>, AnnotatedElement,...

Usage of Reflection

Pros
● Extensibility Features: An application may make use

of external, user-defined classes by creating
instances of extensibility objects using their fully-
qualified names (i.e. given a String create some
object) and more...

Cons
● Performance Overhead, Security Restrictions,

Exposure of Internals
 Reflection is special, avoid!

Examples Reflection

● Inspecting objects*

● Modify objects (change access temporarily)*

● Instantiation without constructor*

Usage of Reflection in Frameworks*

Downloading plugins (*.class-files) from anywhere (web)
and update (running) application with new functionality

Summary

- Generics very comfortable with Collections
Normal usage non problematic

- Generics complicates the type system, (bounded)
wildcards, compatibility,...

- Wildcards imposes restrictions on collections

- Reflection is an advanced technique for modifying a
running program

