
Map-Reduce

John Hughes

The Problem

850TB
in 2006

The Solution?

• Thousands of commodity computers
networked together

• 1,000 computers 850GB each
• How to make them work together?

Early Days

• Hundreds of ad-hoc distributed algorithms
– Complicated, hard to write
– Must cope with fault-tolerance, load distribution,

…

MapReduce: Simplified Data Processing
on Large Clusters
by Jeffrey Dean and Sanjay Ghemawat

In Symposium on Operating Systems Design &
Implementation (OSDI 2004)

The Idea

• Many algorithms apply the same operation to
a lot of data items, then combine results

• Cf map :: (a->b) -> [a] -> [b]
• Cf foldr :: (a->b->b) -> b -> [a] -> b

– Called reduce in LISP

• Define a higher-order function to take care of
distribution; let users just write the functions
passed to map and reduce

Pure functions are great!

• They can be run anywhere with the same

result—easy to distribute

• They can be reexecuted on the same data to
recreate results lost by crashes

”It’s map and reduce, but not as we
know them Captain”

• Google map and reduce work on collections of
key-value pairs

• map_reduce mapper reducer :: [(k,v)] -> [(k2,v2)]
– mapper :: k -> v -> [(k2,v2)]
– reducer :: k2 -> [v2] -> [(k2,v2)]

Usually just 0
or 1

All the values with the
same key are collected

Example: counting words

• Input: (file name, file contents)

• Intermediate pairs: (word, 1)

• Final pairs: (word, total count)

mapper

reducer

Example: counting words

(”foo”,”hello clouds”)
(”baz”,”hello sky”)

(”hello”,1)
(”clouds”,1)
(”hello”,1)
(”sky”,1)

(”clouds”,[1])
(”hello”,[1,1])

(”sky”,[1])

(”clouds”,1)
(”hello”,2)
(”sky”,1)

mapping

sorting reducing

Map-reduce in Erlang

• A purely sequential version

map_reduce_seq(Map,Reduce,Input) ->
 Mapped = [{K2,V2}
 || {K,V} <- Input,
 {K2,V2} <- Map(K,V)],
 reduce_seq(Reduce,Mapped).

reduce_seq(Reduce,KVs) ->
 [KV || {K,Vs} <- group(lists:sort(KVs)),
 KV <- Reduce(K,Vs)].

Map-reduce in Erlang

• A purely sequential version

map_reduce_seq(Map,Reduce,Input) ->
 Mapped = [{K2,V2}
 || {K,V} <- Input,
 {K2,V2} <- Map(K,V)],
 reduce_seq(Reduce,Mapped).

reduce_seq(Reduce,KVs) ->
 [KV || {K,Vs} <- group(lists:sort(KVs)),
 KV <- Reduce(K,Vs)].

> group([{1,a},{1,b},{2,c},{3,d},{3,e}]).
[{1,[a,b]},{2,[c]},{3,[d,e]}]

Counting words

mapper(File,Body) ->
 [{string:to_lower(W),1} || W <- words(Body)].

reducer(Word,Occs) ->
 [{Word,lists:sum(Occs)}].

count_words(Files) ->
 map_reduce_seq(fun mapper/2, fun reducer/2,
 [{File,body(File)} || File <- Files].

body(File) ->
 {ok,Bin} = file:read_file(File),
 binary_to_list(Bin).

Page Rank

mapper(Url,Html) ->
 Urls = find_urls(Url,Html),
 [{U,1} || U <- Urls].

reducer(Url,Ns) ->
 [{Url,lists:sum(Ns)}].

page_rank(Urls) ->
 map_reduce_seq(fun mapper/2, fun reducer/2,
 [{Url,fetch_url(Url)} || Url <- Urls]).

Why not fetch the
URLs in the mapper?

Saves memory in sequential
map_reduce
Parallelises fetching in a parallel one

Page Rank

mapper(Url,ok) ->
 Html = fetch_url(Url),
 Urls = find_urls(Url,Html),
 [{U,1} || U <- Urls].

reducer(Url,Ns) ->
 [{Url,[lists:sum(Ns)]}].

page_rank(Urls) ->
 map_reduce_seq(fun mapper/2, fun reducer/2,
 [{Url,ok} || Url <- Urls]).

Building an Index

mapper(Url,ok) ->
 Html = fetch_url(Url),
 Words = words(Html),
 [{W,Url} || W <- Words].

reducer(Word,Urlss) ->
 [{Word,Urlss}].

build_index(Urls) ->
 map_reduce_seq(fun mapper/2, fun reducer/2,
 [{Url,ok} || Url <- Urls]).

Crawling the web

• Key-value pairs:
– {Url,Body} if already crawled
– {Url,undefined} if needs to be crawled

mapper(Url,undefined) ->
 Body = fetch_url(Url),
 [{Url,Body}] ++
 [{U,undefined} || U <- find_urls(Url,Body)];
mapper(Url,Body) ->
 [{Url,Body}].

Crawling the web

• Reducer just selects the already-fetched body
if there is one

reducer(Url,Bodies) ->
 case [B || B <- Bodies, B/=undefined] of
 [] ->
 [{Url,undefined}];
 [Body] ->
 [{Url,Body}]
 end.

Crawling the web

• Crawl up to a fixed depth (since we don’t have
850TB of RAM)

• Repeated map-reduce is often useful

crawl(0,Pages) ->
 Pages;
crawl(D,Pages) ->
 crawl(D-1,
 map_reduce_seq(fun mapper/2, fun reducer/2,
 Pages)).

Parallelising Map-Reduce

• Divide the input into M chunks, map in
parallel
– About 64MB per chunk is good!
– Typically M ~ 200,000 on 2,000 machines (~13TB)

• Divide the intermediate pairs into R chunks,
reduce in parallel
– Typically R ~ 5,000

Problem: all {K,V} with the
same key must end up in

the same chunk!

Chunking Reduce

• All pairs with the same key must end up in the
same chunk

• Map keys to chunk number: 0..R-1
– e.g. hash(Key) rem R

• Every mapper process generates inputs for all
R reducer processes

erlang:phash2(Key,R)

A Naïve Parallel Map-Reduce

map_reduce_par(Map,M,Reduce,R,Input) ->
 Parent = self(),
 Splits = split_into(M,Input),
 Mappers =
 [spawn_mapper(Parent,Map,R,Split)
 || Split <- Splits],
 Mappeds =
 [receive {Pid,L} -> L end || Pid <- Mappers],
 Reducers =
 [spawn_reducer(Parent,Reduce,I,Mappeds)
 || I <- lists:seq(0,R-1)],
 Reduceds =
 [receive {Pid,L} -> L end || Pid <- Reducers],
 lists:sort(lists:flatten(Reduceds)).

Split input into
M blocks

Spawn a
mapper for
each block

Mappers send
responses

tagged with
their own Pid

Spawn a
reducer for

each hash value Collect the
results of
reducing

Combine and
sort the results

Mappers

 spawn_mapper(Parent,Map,R,Split) ->
 spawn_link(fun() ->
 Mapped =
 %% tag each pair with its hash
 [{erlang:phash2(K2,R),{K2,V2}}
 || {K,V} <- Split,
 {K2,V2} <- Map(K,V)],
 Parent !
 %% group pairs by hash tag
 {self(),group(lists:sort(Mapped))}
 end).

Reducers

 spawn_reducer(Parent,Reduce,I,Mappeds) ->
 %% collect pairs destined for reducer I
 Inputs = [KV
 || Mapped <- Mappeds,
 {J,KVs} <- Mapped,
 I==J,
 KV <- KVs],
 %% spawn a reducer just for those inputs
 spawn_link(fun() ->
 Parent !
 {self(),reduce_seq(Reduce,Inputs)}
 end).

Results

• Despite naïvety, the examples presented run
more than twice as fast on a 2-core laptop

Why is this naïve?

• All processes run in one Erlang node—real
map-reduce runs on a cluster

• We start all mappers and all reducers at the
same time—would overload a real system

• All data passes through the ”master”
process—needs far too much bandwidth

Data Placement

• Data is kept in the file system, not in the
master process
– the master just tells workers where to find it

• Two kinds of files:
– replicated on 3+ nodes, survive crashes
– local on one node, lost on a crash

• Inputs & outputs to map-reduce are
replicated, intermediate results are local

• Inputs & outputs are not collected in one
place, they remain distributed

Intermediate values

• Each mapper generates R local files,
containing the data intended for each reducer
– Optionally reduces each file locally

• Each reducer reads a file from each mapper,

by rpc to the node where it is stored

• Mapper results on nodes which crash are
regenerated on another node

Master process

• Spawns a limited number of workers

• Sends mapper and reducer jobs to workers,
sending new jobs as soon as old ones finish

• Places jobs close to their data if possible

• Tells reducers to start fetching each mapper
output as soon as it is available

A possible schedule

W1

W2

W3

W4

Map 1

Map 2

Map 3

Read 1>1

Read 1>2

Read 3>1 Read 2>1

Read 2>2 Read 3>2

Reduce 1

Reduce 2

Each reduce worker starts to read map output as soon
as possible

Fault tolerance

• Running jobs on nodes that fail are restarted
on others (Need to detect failure, of course)

• Completed maps are rerun on new nodes
– because their results may be needed

• Completed reduce jobs leave their output in
replicated files—no need to rerun

• Close to the end, remaining jobs are replicated
– Some machines are just slow

“During one MapReduce operation, network
maintenance on a running cluster was causing
groups of 80 machines at a time to become
unreachable for several minutes. The MapReduce
master simply re-executed the work done by the
unreachable worker machines and continued to
make forward progress, eventually completing the
MapReduce operation.”

Usage

Google web search indexing

Before After

3800
LOC

700
LOC

Experience

“Programmers find the system easy to use: more than
ten thousand distinct MapReduce programs have been
implemented internally at Google over the
past four years, and an average of one hundred
thousand MapReduce jobs are executed on Google’s
clusters every day, processing a total of more than
twenty petabytes of data per day.”

From MapReduce: Simplified Data Processing on Large Clusters
by Jeffrey Dean and Sanjay Ghemawat, CACM 2008

Applications

• large-scale machine learning
• clustering for Google News and Froogle
• extracting data to produce reports of popular

queries
– e.g. Google Zeitgeist and Google Trends

• processing of satellite imagery
• language model processing for statistical

machine translation
• large-scale graph computations.
• Apache Hadoop

Map-Reduce in Erlang

• Functional programming concepts underlie
map-reduce (although Google use C++)

• Erlang is very suitable for implementing it
• Nokia Disco—www.discoproject.org

– Used to analyze tens of TB on over 100 machines
– Multiple masters

• Riak MapReduce
– Improves locality in applications of the Riak no-

SQL key-value store

Reading: one of

• The original OSDI 2004 paper (see earlier)

• MapReduce: simplified data processing on
large clusters, Jeffrey Dean and Sanjay
Ghemawat

In Communications of the ACM - 50th anniversary issue:
1958 – 2008, Volume 51 Issue 1, January 2008

– A shorter summary, some more up-to-date info

You may have seen…

What is it?

PLDI
2010

What is it?

• A datatype of immutable parallel collections
– which can be distributed over a data centre
– or consist of streaming data

• An API including map, reduce, filter, group…
that apply pure functions to collections

• An optimising on-the-fly compiler that
converts FlumeJava pipelines to a sequence of
MapReduce jobs…

• A higher-level interface built on top of
MapReduce

	Map-Reduce
	The Problem
	The Solution?
	Early Days
	Slide Number 5
	The Idea
	Pure functions are great!
	”It’s map and reduce, but not as we know them Captain”
	Example: counting words
	Example: counting words
	Map-reduce in Erlang
	Map-reduce in Erlang
	Counting words
	Page Rank
	Page Rank
	Building an Index
	Crawling the web
	Crawling the web
	Crawling the web
	Parallelising Map-Reduce
	Chunking Reduce
	A Naïve Parallel Map-Reduce
	Mappers
	Reducers
	Results
	Why is this naïve?
	Data Placement
	Intermediate values
	Master process
	A possible schedule
	Fault tolerance
	Slide Number 32
	Usage
	Google web search indexing
	Experience
	Applications
	Map-Reduce in Erlang
	Reading: one of
	You may have seen…
	What is it?
	What is it?

