
Runtime Verification
Gordon J. Pace

University of Malta

May 2015

Why Verify?

•  Systems are growing:
•  … in size

•  … in complexity

•  … in the ways they interact with real-life objects

•  Leading to more opportunities for failure,

•  and making the consequences of failure more serious

•  Meaning we need to ensure our systems work correctly.

The Question

Let’s Start with Testing

•  Before deployment (and ideally throughout
the development phase)…

•  try the program along different execution
paths to see whether the program works
correctly.

Testing: The Challenges… (1)

•  What constitutes a correct program?
•  Black listed users may not start a transaction.

•  Account balances may never go below zero.

•  No transaction may last longer than 3 hours.

•  Oracles used to check for correct functional
behaviour

Testing: The Challenges… (2)

•  What paths to test?
•  Choices over inputs

•  Non-determinism

Testing: The Challenges… (2)

function	 transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	

	 if	 (act_source.isWhiteListed()	 &&	

	 	 	 	 	 balance	 >=	 amount)	 {	

	 	 act_dest.deposit(amount);	

	 	 act_source.withdraw(amount);	
	 }	

}	

Testing: The Challenges… (2)

if	 (webinterface.getTransferRequest())	 {	
	 if	 (webinterface.fromField.valid	 &&	
	 	 	 	 	 webinterface.toField.valid	 &&	
	 	 	 	 	 webinterface.amountField	 >	 0)	 {	
	 	 transfer(
	 	 	 webinterface.fromField,	
	 	 	 webinterface.toField,	
	 	 	 webinterface.amountField);	
	 }	

}	

Testing: The Challenges… (2)

if	 (webinterface.getTransferRequest())	 {	
	 if	 (webinterface.fromField.valid	 &&	
	 	 	 	 	 webinterface.toField.valid	 &&	
	 	 	 	 	 webinterface.amountField	 >	 0)	 {	
	 	 transfer(
	 	 	 webinterface.fromField,	
	 	 	 webinterface.toField,	
	 	 	 webinterface.amountField);	
	 }	

}	

•  Question 1: What values and accounts should we
test the function on?

Testing: The Challenges… (2)

thread1.execute(transfer(joe,	 peter,	 1000));	
thread2.execute(transfer(joe,	 peter,	 5000));	
	

	

•  Question 2: What about non-determinism?

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

getBalance returned
$5600

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

getBalance returned
$5600

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

Testing: The Challenges… (2)

transfer(act_source,	 act_dest,	 amount)	 {	
	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	
transfer(act_source,	 act_dest,	 amount)	 {	

	 balance	 =	 act_source.getBalance();	
	 if	 (act_source.isWhiteListed()	 &&	 balance	 >=	 amount)	 {	
	 	 act_dest.deposit(amount);	
	 	 act_source.withdraw(amount);	
	 }	

}	
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 1
00
0)
	

tr
an
sf
er
	

(j
oe
,	
pe
te
r,
	 5
00
0)
	

Summary: Testing

•  Pros:
•  (Relatively) easy to set up

•  Can be performed throughout the development phase

•  (Usually) tests can be rerun across versions

•  Cons:
•  Difficult to generate paths intelligently

•  Can only talk about what happens, not about what may
happen

•  We can (normally) never say “Correct”

Verification Summary

•  In an ideal world, we would like to ensure that our
systems cannot fail…

•  … but testing leaves out paths which may occur in
practice.

Some Observations…

•  Observation 1:
a.  Checking a whole system is usually computationally

expensive…

b.  But checking a single path is usually not (hence
oracles in testing).

•  Observation 2:
a.  Generating a representative set of paths is tough…

b.  because the system may go through some other path
which we may not have checked before.

A Logical Conclusion…

•  So why not:
•  check properties only on certain execution paths

•  but continue checking after deployment to ensure that
any execution paths followed by the live system do not
violate the property,

•  and if they do fix the system or just stop it.

A Logical Conclusion…

•  So why not:
•  check properties only on relevant execution paths

•  but continue checking after deployment to ensure that
any execution paths followed by the live system do not
violate the property,

•  and if they do fix the system or just stop it.

runtime monitoring

A Logical Conclusion…

•  So why not:
•  check properties only on relevant execution paths

•  but continue checking after deployment to ensure that
any execution paths followed by the live system do not
violate the property,

•  and if they do fix the system or just stop it.

runtime verification

So Finally, Runtime Verification

•  Monitor what the system is doing…

•  verifying that it does not violate any
property.

•  If it does, stop the system or fix it.

Summary: Runtime Verification

•  Pros:
•  We can say “The system never continues after failure.”
•  Scales up.
•  Easy to adopt.

•  Cons:
•  We can never say “The system is correct.”
•  Overheads (time and memory) may be prohibitive.
•  Can only talk about finite traces.
•  Can only be performed at runtime.
•  Does not remove bugs, but stops their consequences.

Part II

An Overview of
Runtime Verification

Runtime Verification

System

Specification

Runtime Verification

System

Specification

RV
tool

Runtime Verification

System

Specification

RV
tool

System

Monitor

Verifier

Some Issues and Choices

•  Where do we write the properties?

•  How do we express the properties?

•  Where does the verification code go?

•  How does the verification code communicate with
the main system?

Writing Specifications

•  Two primary options:
•  Option 1: Inlining monitors

•  Option 2: Separate specification from system
description

Inlining Specifications:
Assertions

function	 startTransaction(User	 u)	 {	
	 assert(!u.isBlacklisted());	
	 Transaction	 t	 =	 createTransaction();	
	 if	 (u.isDormant())	 {	
	 	 t.makePending();	
	 }	
	 assert(t.isActive());	
	 return(t);	

}	

Inlining Specifications:
Assertions with Additional Logic

function	 beginTransaction(User	 u)	 {	
	 Transaction	 t	 =	 createTransaction();	
	 …	
	 ongoingTransactions.add(t);	

}	
	
function	 endTransaction(User	 u,	 Transaction	 t)	 {	

	 assert(ongoingTransactions.hasItem(t));	
	 …	
	 ongoingTransactions.removeItem(t)	
	 …	

}	

Separation of Concerns

•  Separating specification from the system
requires additional work to weave the two
together.

System

Specification

Separation of Concerns

•  Separating specification from the system
requires additional work to weave the two
together.

System

Specification
RV
tool

Separation of Concerns

•  Separating specification from the system
requires additional work to weave the two
together.

System

Specification
Weaving

instructions

RV
tool

Separation of Concerns

•  Separating specification from the system
requires additional work to weave the two
together.

System

Specification

Weaving
tool Weaving

instructions

RV
tool

Separation of Concerns:
Program Transformations

•  Tools exist to transform a program into another
program in the same language

•  Typically such tools access the abstract syntax tree of
the source program, and produce the abstract syntax
tree of the destination program.

Separation of Concerns:
Aspect-Oriented Programming

•  Modular abstraction techniques e.g. object-oriented
design aims at abstracting models – sharing common
parts across the implementation.

•  Sometimes, one modularisation strategy foregoes
another, requiring code replication and the merging
of business-logic and support code.

•  Aspect-oriented programming gives ways of
changing code across a whole system in a modular
way.

Separation of Concerns:
Aspect-Oriented Programming

•  Consider adding a logging feature for all types of
money transfers, and which can be toggled or or off.

•  Either we add a line to each transfer method:
 void	 transfer()	 {	 	
	 	 if	 (log.enabled)	 {	 log.write(“…”);	 }	
	 	 ...	
	 }	

•  Or we can use an AOP tool and write:
 @before	 call(*.transfer(..))	
	 	 log.write(“…”);	

Property Specification
Languages

•  Writing properties as assertions at particular points
in the program is very restrictive:
•  Choice of points is purely syntactic, not semantic e.g.

specifying “y should be 0 when x becomes 42”.
•  Any reasoning about context has to appear as

additional code intermingling with the system code e.g.
“startTransaction should be called before endTransaction”.

•  Richer logics enable implicit specification of such
context.

Property Specification
Languages

•  Temporal logics enable reasoning about events as
they happen over time.

•  Basic events usually still control-flow (syntactic)
rather than data-flow (semantic) due to overheads:
•  upon starting a method call

•  at the end of a method call

•  when an exception is raised

Property Specification
Languages: Automata

•  Finite state automata (e.g. in the form of UML
diagrams) can be a good way of allowing the
specification of consequentiality behaviour.

Property Specification
Languages: Automata

•  Finite state automata (e.g. in the form of UML
diagrams) can be a good way of allowing the
specification of consequentiality behaviour.

logout

login

transfer

Property Specification
Languages: Automata

•  Access to system data enhances expressiveness...

u.logout

u.login | !u.isBlackListed()

transfer(f) | f.isPrivate()

Property Specification
Languages: Automata

•  Access to system data enhances expressiveness and
interaction with the system…

u.logout

u.login | !u.isBlackListed()

transfer(f) | f.isPrivate() | u.logout()

Property Specification
Languages: Automata

•  Access to data enhances expressiveness and allows
for more compact descriptions:

insertCard() | | wpin=0

withdrawCard()

badPin() | wpin < 3 | wpin++

badPin() | wpin=3

goodPin()

Property Specification
Languages: Logic-Based

•  Textual logics, with a grammar, can be more
effective in some settings.

•  For instance, consider Regular Expressions…

Property Specification
Languages: Logic-Based

•  Regular expressions can also be used for temporal
specifications:
 ::= event

| event
| ?
| 1
| 0
| + 0

| 0

| ⇤

Property Specification
Languages: Logic-Based

•  Regular expressions can also be used for temporal
specifications.

•  Examples:
•  ?* login logout
•  (login (write + read)* logout)* (read + write)

Verification Algorithms

•  Given a specification written in a particular logic,
how can we automatically check whether a trace
matches it?

•  For online monitoring, the algorithm should ideally
be incrementally computable from left to right.

•  For offline monitoring this need not be the case, and
more efficient parsing algorithms can be used.

Verification Algorithms for
Automata

•  Consider the use of automata for RV:

LI LO B

logout

login

transfer

logout

Verification Algorithms for
Automata

LI LO B

logout

login

transfer

•  Instrumentation is straightforward:

@before	 call(*.login(..))	
	 if	 (state==LO)	 {	 state	 =	 LI;	 }	

@before	 call(*.logout(..))	
	 if	 (state==LI)	 {	 state	 =	 LO;	 }	 else	
	 if	 (state==LO)	 {	 state	 =	 B;	 reportError();	 }	

@before	 call(*.transfer(..))	
	 if	 (state==LO)	 {	 state	 =	 B;	 reportError();	 }	

logout

Verification Algorithms for
Logics

•  Let us consider regular expressions again:

 ::= event
| event
| ?
| 1
| 0
| + 0

| 0

| ⇤

Verification Algorithms for
Logics

•  One possibility is to translate regular expressions
into automata.

(login(transfer + balance)

⇤
logout)

⇤
trasfer

Verification Algorithms for
Logics

•  One possibility is to translate regular expressions
into automata.

LI LO

B

logout

login

transfer

transfer

balance

(login(transfer + balance)

⇤
logout)

⇤
trasfer

Verification Algorithms for
Logics

•  Given a regular expression e to match, and the first
event a, identify a regular expression f such that after
a, we can equivalently match f.

•  More precisely: Given property e, find e’ such that
any trace aw matches e if and only if w matches e’.

•  This together with an algorithm to check whether
the empty trace matches property e suffices.

Verification Algorithms for
Logics

•  Another possibility is to define a residual algorithm for
regular expressions.

•  Starting from a regular expression to match e, what
remains to be matched after receiving a particular
event e?

Verification Algorithms for
Logics

(login (transfer + balance)* logout)* transfer

→login→

(transfer + balance)* logout
(login (transfer + balance)* logout)* transfer

→logout→

(login (transfer + balance)* logout)* transfer

→transfer→

MATCH!

RV Architecture

System

Specification

RV
tool

System

Monitor

Verifier

RV Architecture

System

Specification

RV
tool

System

Monitor

Verifier

How do the verification
modules communicate

with the system?

RV Architecture

System

Monitor

Verifier

RV Architecture

System Monitor Verifier

RV Architecture

System

M
onitor Verifier

RV Architecture

System

M
onitor Verifier

RV Architecture: Synchronous

System

M
onitor Verifier

events

ok/error

handshake

RV Architecture: Synchronous

function	 login(…)	 {	

	 //	 main	 code	

	 …	

}	

RV Architecture: Synchronous

function	 login(…)	 {	
	 Verifier.send(login,	 …);	

	 result	 =	 Verifier.receive();	

	 if	 (result	 ==	 OK)	 {	

	 	 //	 main	 code	

	 	 …	
	 }	

}	

RV Architecture: Synchronous

•  Synchronous monitoring guarantees that the system
never advances beyond failure.

•  Upon failure one can attempt to fix the problem
since we are guaranteed to stop immediately after
the failure.

•  The cost in overheads can be prohibitive if the
volume of monitored events is large.

RV Architecture: Asynchronous

System

M
onitor Verifier

events

ok/error

buffered
(or left out)

buffered

RV Architecture: Asynchronous

System

M
onitor Verifier events

a

b

c

d

RV Architecture: Asynchronous

function	 login(…)	 {	

	 //	 main	 code	

	 …	

}	

function	 login(…)	 {	
	 Verifier.send(login,	 …);	

	 //	 main	 code	

	 …	

}	

RV Architecture: Asynchronous

•  Overheads limited to the cost of logging events.

•  If there is complete independence between runtime
and verification time, we can postpone the
verification till after the whole trace has been
generated and parse it in any way we want (e.g. for
some past time logics, backward analysis is more
efficient).

•  Once failure is identified, we cannot do much more
than notify the developers.

RV Architecture: Asynchronous

•  There are many design choices in RV:
•  How to monitor (extract events)

•  How to specify what to verify

•  Where to specify what to verify

•  How to verify

•  How to connect the monitor with the verifier

•  When to verify

•  What to do with the outcome of the verification

RV Overview

Runtime Verification
& Testing

Gordon J. Pace
University of Malta

May 2015

RV and Testing

•  Testing has been established as de rigeur practice in
industry, with quality assurance being a crucial part
of the development cycle.

•  Runtime verification is still far from being
assimilated in software engineering development
processes for a number of reasons:
•  Overheads can be prohibitive
•  Requires the adoption of new tools and development

processes
•  Requires re-training of developers

RV and Testing

•  Testing has been established as de rigeur practice in
industry, with quality assurance being a crucial part
of the development cycle.

•  Runtime verification is still far from being
assimilated in software engineering development
processes for a number of reasons:
•  Overheads can be prohibitive
•  Requires the adoption of new tools and development

processes
•  Requires re-training of developers

Can we hinge on the success
of testing for software quality

assurance to introduce
runtime verification “for

free”?

Testing

•  Recall some of the major challenges testing faces:
•  Generation: How to generate representative traces to

test on?

•  Validation: How to check that the system works well
on these traces?

•  Coverage: How to assess the coverage of the traces
over traces that will happen at runtime?

Testing

•  Recall some of the major challenges testing faces:
•  Generation: How to generate representative traces to

test on?

•  Validation: How to check that the system works well
on these traces?

•  Coverage: How to assess the coverage of the traces
over traces that will happen at runtime?

This is a concern shared with
runtime verification

Generation and Validation

•  Different approaches solve the generation and validation,
typically combining the issues in a single framework e.g.
•  Unit testing: Test units (e.g. modules) separately, by

mocking other parts of the system – using test scripts
specifying (i) the test cases; and (ii) oracles to check the
results.

•  Model-based testing: An abstract model of the system under
test is built and abstract test cases defined (manually or
automatically) from which concrete test cases are generated
and run against the real system to compare the output with
that of the model.

Generation and Validation

•  We have two languages implicitly defined:
• The language T of testable traces from

which we will generate elements.
• The language Y (or N) of correct (or bad)

traces.

Generation and Validation

•  Example:
• Testable traces T consist of traces in which

the user will trigger a sequence of login,
logout, read and write events but no reconnect
events.

• The set of bad traces N consists of all those
in which the user tries to read or write
without first logging in.

Generation and Validation

•  Example:
• Testable traces T consist of traces in which

the user will trigger a sequence of login,
logout, read and write events but no reconnect
events.

• The set of bad traces N consists of all those
in which the user tries to read or write
without first logging in.

Is this trace a violation?

login . read . logout . reconnect . write

Generation and Validation

•  Example:
• Testable traces T consist of traces in which

the user will trigger a sequence of login,
logout, read and write events but no reconnect
events.

• The set of bad traces N consists of all those
in which the user tries to read or write
without first logging in.

Is this trace a violation?

login . read . logout . reconnect . write
It is in N, but…

not in T…
i.e. the testing tool would never

identify this as a violation

RV and Testing

•  Question: How can we use the testing
specification (i.e. T and N or Y) to construct
a runtime verifier to match bad traces (i.e.
T∩N or T \Y)?

RV and Testing

•  Question: How can we use the testing
specification (i.e. T and N or Y) to construct
a runtime verifier to match bad traces (i.e.
T∩N or T \Y)?

•  We will be doing this for two particular
technologies: QuickCheck and LARVA.

QuickCheck

•  QuickCheck is a model-based testing tool originally
built for Haskell, now available for Erlang, C, etc.

•  Works through random test case generation using
QuickCheck Finite State Automata (QCFSA).

•  QCFSAs serve both for generation and validation of
traces:
•  Generation through directed (semi-random) traversal
•  Validation through specification of postconditions

associated with each transition

QuickCheck

•  Example: Consider a mobile phone credit
top-up system
•  message() costs 1 credit, returns false on

failure.

•  recharge() adds 10 credits to the account,
returns new credit.

QuickCheck Automata
Motivation Testing Runtime Verification Combining Techniques Results and Conclusions

QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

QuickCheck Automata
Motivation Testing Runtime Verification Combining Techniques Results and Conclusions

QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

The precondition: the
transition can only be

taken if the precondition
is true

QuickCheck Automata
Motivation Testing Runtime Verification Combining Techniques Results and Conclusions

QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

The invocation: A
function to invoke when

taking the transition

QuickCheck Automata
Motivation Testing Runtime Verification Combining Techniques Results and Conclusions

QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

The postcondition: Will be
checked upon termination of the
invocation – will cause a failure

if it returns false

QuickCheck Automata
Motivation Testing Runtime Verification Combining Techniques Results and Conclusions

QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

The action: The action is
taken after checking the

postcondition, before
proceeding further with the

automaton.

QuickCheck Automata
Motivation Testing Runtime Verification Combining Techniques Results and Conclusions

QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

LARVA

•  LARVA is a synchronous runtime
verification tool, originally built for Java,
but with a version also available for
Erlang.

•  Uses DATEs (Dynamic Automata with
Timers and Events) to give a specification.

LARVA Automata

Combining Testing and Runtime Verification Techniques 7

names used in QuickCheck automata to invoke their execution, references to function
names in DATEs are used to match against observed system behaviour, and we distin-
guish between the moment of entry and exit to a function. For this reason, monitoring
automata will be tagged by event observations such as f # and f " and not invocations
such as f �. For example, a transition labelled by event f # will be triggered whenever
the system control enters function f (no matter what parameters it receives). Note that
in the case of a recursive function f , a single invocation f � may trigger such transitions
multiple times.

Definition 6. A symbolic event-based automaton over function names � and running
with a system with state ⇥ is a quadruple hQ, q0, t, Bi with set of states Q, initial state
q0 2 Q, transition relation t and bad states B ✓ Q.

Transitions are labelled by: (i) the event in �l which triggers it; (ii) a guard con-
dition — corresponding to predicate over the parameter passed to the function and
the system state and which determines whether the transition can be followed: 2X⇥⇥;
(iii) an action (also parametrised over the values passed to the function as parameters)
which may change the system state: X ⇥⇥! ⇥. The transition relation t thus satisfies:
t ✓ Q ⇥�l ⇥ 2X⇥⇥ ⇥ (X ⇥ ⇥! ⇥) ⇥ Q.

It is assumed that bad states are sink-states, and thus do not have any outgoing
transitions, and that there is an implicit total ordering on the transitions.

In this exposition, we assume that the function return values reside in the system
state space ⇥, which may also include information used by monitoring (e.g. to keep
track of a counter), but which will not interact directly with the system.

Example 2. Consider a system which should ensure that if a user logs in using an ac-
count with priority level of 3 or less, he or she may not delete records. We will assume
that logins occur using a function login which takes takes a parameter plevel, and record
deletion happens upon executing function delete.6 A DATE which verifies this property
is shown in Figure 2.

login# | plevel 3 | • delete# | true | •

Fig. 2. Monitoring for unauthorised deletion

Note that each transition in the diagram is tagged by three bar-separated expres-
sions identifying (i) the triggering event; (ii) the guard; and (iii) the action to be taken,
respectively. Whenever no action is to be taken we still tag the transition with • so as to
aid comprehensibility. Bad states are annotated by using a double circle node.

6 We also abuse the predicate notation here and write predicates as expressions rather than as
the set of parameter and system state pairs which satisfy the guard condition.

LARVA Automata

Combining Testing and Runtime Verification Techniques 7

names used in QuickCheck automata to invoke their execution, references to function
names in DATEs are used to match against observed system behaviour, and we distin-
guish between the moment of entry and exit to a function. For this reason, monitoring
automata will be tagged by event observations such as f # and f " and not invocations
such as f �. For example, a transition labelled by event f # will be triggered whenever
the system control enters function f (no matter what parameters it receives). Note that
in the case of a recursive function f , a single invocation f � may trigger such transitions
multiple times.

Definition 6. A symbolic event-based automaton over function names � and running
with a system with state ⇥ is a quadruple hQ, q0, t, Bi with set of states Q, initial state
q0 2 Q, transition relation t and bad states B ✓ Q.

Transitions are labelled by: (i) the event in �l which triggers it; (ii) a guard con-
dition — corresponding to predicate over the parameter passed to the function and
the system state and which determines whether the transition can be followed: 2X⇥⇥;
(iii) an action (also parametrised over the values passed to the function as parameters)
which may change the system state: X ⇥⇥! ⇥. The transition relation t thus satisfies:
t ✓ Q ⇥�l ⇥ 2X⇥⇥ ⇥ (X ⇥ ⇥! ⇥) ⇥ Q.

It is assumed that bad states are sink-states, and thus do not have any outgoing
transitions, and that there is an implicit total ordering on the transitions.

In this exposition, we assume that the function return values reside in the system
state space ⇥, which may also include information used by monitoring (e.g. to keep
track of a counter), but which will not interact directly with the system.

Example 2. Consider a system which should ensure that if a user logs in using an ac-
count with priority level of 3 or less, he or she may not delete records. We will assume
that logins occur using a function login which takes takes a parameter plevel, and record
deletion happens upon executing function delete.6 A DATE which verifies this property
is shown in Figure 2.

login# | plevel 3 | • delete# | true | •

Fig. 2. Monitoring for unauthorised deletion

Note that each transition in the diagram is tagged by three bar-separated expres-
sions identifying (i) the triggering event; (ii) the guard; and (iii) the action to be taken,
respectively. Whenever no action is to be taken we still tag the transition with • so as to
aid comprehensibility. Bad states are annotated by using a double circle node.

6 We also abuse the predicate notation here and write predicates as expressions rather than as
the set of parameter and system state pairs which satisfy the guard condition.

Event: The transition
can only be taken when
the system triggers the

event.

LARVA Automata

Combining Testing and Runtime Verification Techniques 7

names used in QuickCheck automata to invoke their execution, references to function
names in DATEs are used to match against observed system behaviour, and we distin-
guish between the moment of entry and exit to a function. For this reason, monitoring
automata will be tagged by event observations such as f # and f " and not invocations
such as f �. For example, a transition labelled by event f # will be triggered whenever
the system control enters function f (no matter what parameters it receives). Note that
in the case of a recursive function f , a single invocation f � may trigger such transitions
multiple times.

Definition 6. A symbolic event-based automaton over function names � and running
with a system with state ⇥ is a quadruple hQ, q0, t, Bi with set of states Q, initial state
q0 2 Q, transition relation t and bad states B ✓ Q.

Transitions are labelled by: (i) the event in �l which triggers it; (ii) a guard con-
dition — corresponding to predicate over the parameter passed to the function and
the system state and which determines whether the transition can be followed: 2X⇥⇥;
(iii) an action (also parametrised over the values passed to the function as parameters)
which may change the system state: X ⇥⇥! ⇥. The transition relation t thus satisfies:
t ✓ Q ⇥�l ⇥ 2X⇥⇥ ⇥ (X ⇥ ⇥! ⇥) ⇥ Q.

It is assumed that bad states are sink-states, and thus do not have any outgoing
transitions, and that there is an implicit total ordering on the transitions.

In this exposition, we assume that the function return values reside in the system
state space ⇥, which may also include information used by monitoring (e.g. to keep
track of a counter), but which will not interact directly with the system.

Example 2. Consider a system which should ensure that if a user logs in using an ac-
count with priority level of 3 or less, he or she may not delete records. We will assume
that logins occur using a function login which takes takes a parameter plevel, and record
deletion happens upon executing function delete.6 A DATE which verifies this property
is shown in Figure 2.

login# | plevel 3 | • delete# | true | •

Fig. 2. Monitoring for unauthorised deletion

Note that each transition in the diagram is tagged by three bar-separated expres-
sions identifying (i) the triggering event; (ii) the guard; and (iii) the action to be taken,
respectively. Whenever no action is to be taken we still tag the transition with • so as to
aid comprehensibility. Bad states are annotated by using a double circle node.

6 We also abuse the predicate notation here and write predicates as expressions rather than as
the set of parameter and system state pairs which satisfy the guard condition.

Condition: When the event
occurs, the condition has to
be satisfied for the transition

to be taken.

LARVA Automata

Combining Testing and Runtime Verification Techniques 7

names used in QuickCheck automata to invoke their execution, references to function
names in DATEs are used to match against observed system behaviour, and we distin-
guish between the moment of entry and exit to a function. For this reason, monitoring
automata will be tagged by event observations such as f # and f " and not invocations
such as f �. For example, a transition labelled by event f # will be triggered whenever
the system control enters function f (no matter what parameters it receives). Note that
in the case of a recursive function f , a single invocation f � may trigger such transitions
multiple times.

Definition 6. A symbolic event-based automaton over function names � and running
with a system with state ⇥ is a quadruple hQ, q0, t, Bi with set of states Q, initial state
q0 2 Q, transition relation t and bad states B ✓ Q.

Transitions are labelled by: (i) the event in �l which triggers it; (ii) a guard con-
dition — corresponding to predicate over the parameter passed to the function and
the system state and which determines whether the transition can be followed: 2X⇥⇥;
(iii) an action (also parametrised over the values passed to the function as parameters)
which may change the system state: X ⇥⇥! ⇥. The transition relation t thus satisfies:
t ✓ Q ⇥�l ⇥ 2X⇥⇥ ⇥ (X ⇥ ⇥! ⇥) ⇥ Q.

It is assumed that bad states are sink-states, and thus do not have any outgoing
transitions, and that there is an implicit total ordering on the transitions.

In this exposition, we assume that the function return values reside in the system
state space ⇥, which may also include information used by monitoring (e.g. to keep
track of a counter), but which will not interact directly with the system.

Example 2. Consider a system which should ensure that if a user logs in using an ac-
count with priority level of 3 or less, he or she may not delete records. We will assume
that logins occur using a function login which takes takes a parameter plevel, and record
deletion happens upon executing function delete.6 A DATE which verifies this property
is shown in Figure 2.

login# | plevel 3 | • delete# | true | •

Fig. 2. Monitoring for unauthorised deletion

Note that each transition in the diagram is tagged by three bar-separated expres-
sions identifying (i) the triggering event; (ii) the guard; and (iii) the action to be taken,
respectively. Whenever no action is to be taken we still tag the transition with • so as to
aid comprehensibility. Bad states are annotated by using a double circle node.

6 We also abuse the predicate notation here and write predicates as expressions rather than as
the set of parameter and system state pairs which satisfy the guard condition.

Action: When the
transition is taken, the

action is executed.

LARVA Automata

Combining Testing and Runtime Verification Techniques 7

names used in QuickCheck automata to invoke their execution, references to function
names in DATEs are used to match against observed system behaviour, and we distin-
guish between the moment of entry and exit to a function. For this reason, monitoring
automata will be tagged by event observations such as f # and f " and not invocations
such as f �. For example, a transition labelled by event f # will be triggered whenever
the system control enters function f (no matter what parameters it receives). Note that
in the case of a recursive function f , a single invocation f � may trigger such transitions
multiple times.

Definition 6. A symbolic event-based automaton over function names � and running
with a system with state ⇥ is a quadruple hQ, q0, t, Bi with set of states Q, initial state
q0 2 Q, transition relation t and bad states B ✓ Q.

Transitions are labelled by: (i) the event in �l which triggers it; (ii) a guard con-
dition — corresponding to predicate over the parameter passed to the function and
the system state and which determines whether the transition can be followed: 2X⇥⇥;
(iii) an action (also parametrised over the values passed to the function as parameters)
which may change the system state: X ⇥⇥! ⇥. The transition relation t thus satisfies:
t ✓ Q ⇥�l ⇥ 2X⇥⇥ ⇥ (X ⇥ ⇥! ⇥) ⇥ Q.

It is assumed that bad states are sink-states, and thus do not have any outgoing
transitions, and that there is an implicit total ordering on the transitions.

In this exposition, we assume that the function return values reside in the system
state space ⇥, which may also include information used by monitoring (e.g. to keep
track of a counter), but which will not interact directly with the system.

Example 2. Consider a system which should ensure that if a user logs in using an ac-
count with priority level of 3 or less, he or she may not delete records. We will assume
that logins occur using a function login which takes takes a parameter plevel, and record
deletion happens upon executing function delete.6 A DATE which verifies this property
is shown in Figure 2.

login# | plevel 3 | • delete# | true | •

Fig. 2. Monitoring for unauthorised deletion

Note that each transition in the diagram is tagged by three bar-separated expres-
sions identifying (i) the triggering event; (ii) the guard; and (iii) the action to be taken,
respectively. Whenever no action is to be taken we still tag the transition with • so as to
aid comprehensibility. Bad states are annotated by using a double circle node.

6 We also abuse the predicate notation here and write predicates as expressions rather than as
the set of parameter and system state pairs which satisfy the guard condition.

LARVA Automata

After blocking port p, no data transfer may occur
on that port.

Since blocking a port and transfering data may be
concurrently accessed, transfer may not be entered only once
block terminates.

8 K. Falzon and G. J. Pace

Example 3. As a more complex example, consider a system in which, after blocking a
port p (using the function block(port)), no data transfer may occur on that port (using
function transfer(port)). Since the function to block a port and to transfer data may be
concurrently accessed, we will enforce that only once the block function terminates,
transfer may not be entered. Figure 3 shows how such a property may be monitored.

q0 qb

block" | true | addToBlocked(port)

transfer# | isBlocked(port) | •

Fig. 3. Monitoring for transfers over a blocked port

There are di↵erent ways of encoding this property. The approach illustrated uses
just two states — an initial one q0 and bad state qb. As long as the monitor is in state
q0, event block" (with no guard) performs an action which adds the port appearing as
parameter to a set of blocked ports and goes back to state q0. On the other hand, any
transfer in which the port given as parameter appears in the set of blocked ports will
take the monitor to state qb:

Definition 7. The configuration C of a symbolic event-based automaton M = hQ, q0, t,
Bi is a monitor-state and system state: C 2 Q ⇥ ⇥. We write (q, ✓)

ex�!M (q0, ✓0) (with
e being of the form f # or f ") if: (i) there is a transition from q to q0 with event e:
(q, f , cond, action, q0) 2 t; (ii) whose guard is satisfied on parameter x: cond(x, ✓); (iii)
the transition is the one with the highest priority with a matching event and satisfied
condition; and (iv) changes the state to ✓0: action(x, ✓) = ✓0.

Note that the total ordering on the transitions, used to choose the one with the high-
est precedence, ensures that the automaton is deterministic.

Definition 8. The language of bad traces of a symbolic event-based automaton M =
hQ, q0, t, Bi for a system starting in state ✓0 2 ⇥, written B✓0 (M), is defined to be the set
of strings over �lX such that ↵̂1↵̂2 . . . ↵̂n 2 B✓0 (M) if and only if there are intermediate

configurations such that: (q0, ✓0)
↵̂1��!M (q1, ✓1)

↵̂2��!M . . .
↵̂n��!M (qn, ✓n), and qn 2 B.

3 From Validation to Verification Automata

Even at a syntactic level, the automata used for testing and those used for runtime
verification di↵er: while references to functions in testing automata are prescriptive,
identifying which functions are to be invoked, references in the monitoring automata
act as guards which trigger upon invocation or termination. The di↵erence arises from

QuickCheck Specifications to
LARVA Automata

Motivation Testing Runtime Verification Combining Techniques Results and Conclusions

Splitting QCFSA Transitions: Example

broke charged

true\recharge()\Result > 0\credit += 10

The following example will illustrate the splitting of a QCFSA
transition into events

Precondition checked on function invocation (entry event)

Postcondition evaluated on function return (exit event)

QuickCheck Specifications to
LARVA Automata

Motivation Testing Runtime Verification Combining Techniques Results and Conclusions

Splitting QCFSA Transitions: Example

broke charged QCFSA

credit � 0\recharge()\Result > 0\credit+=10

+

broke broke0 charged

bad⇤

DATE

recharge

| credit � 0 | • recharge

" | Result > 0 | credit+=10

recharge

" | ¬(Result > 0) | •

QuickCheck Specifications to
LARVA Automata

Theorem: Given a QuickCheck automaton
M, there exists a DATE D which will
recognise all and only the negative traces
which can be generated by M.

Limitations

•  Test cases are sometimes very specific and not
generalised.

•  Tests sometimes give high importance to borderline
cases increasing overheads for rare instances.

•  In some cases, the approach would fail:
•  Equivalence partitioning: Partitions test space into parts

such that testing one trace in each partition – other
cases, although relevant, are not caught by the monitor.

•  Regression testing: Focuses on finding faults on code
changes. Tests may be localised to changes in code, thus
severely limiting coverage.

Conclusions

•  Oracles in runtime verification and testing
serve an identical purpose…

•  But generation comes for free in runtime
verification making testing-to-runtime
verification easier.

•  Still, tests have to be built with runtime
verification in mind to maximise return.

•  Similar work combining JUnit and runtime
verification identified similar issues.

Some papers to read

•  Martin Leucker, Christian Schallhart, A brief account
of runtime verification. J. Log. Algebr. Program. 78(5):
293-303, 2009.

•  Kevin Falzon, Gordon J. Pace, Combining Testing and
Runtime Verification Techniques. MOMPES 2012:
38-57, 2012.

•  Normann Decker, Martin Leucker, Daniel Thoma,
jUnitRV-Adding Runtime Verification to jUnit. NASA
Formal Methods 2013: 459-464, 2013.

