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Why Verify? 

•  Systems are growing: 
•  … in size 

•  … in complexity 

•  … in the ways they interact with real-life objects 

•  Leading to more opportunities for failure, 

•  and making the consequences of  failure more serious 

•  Meaning we need to ensure our systems work correctly. 



The Question 



Let’s Start with Testing 

•  Before deployment (and ideally throughout 
the development phase)… 

•  try the program along different execution 
paths to see whether the program works 
correctly. 



Testing: The Challenges… (1) 

•  What constitutes a correct program? 
•  Black listed users may not start a transaction. 

•  Account balances may never go below zero. 

•  No transaction may last longer than 3 hours. 

•  Oracles used to check for correct functional 
behaviour 



Testing: The Challenges… (2) 

•  What paths to test? 
•  Choices over inputs 

•  Non-determinism 



Testing: The Challenges… (2) 

function	  transfer(act_source,	  act_dest,	  amount)	  {	  
	  balance	  =	  act_source.getBalance();	  

	  if	  (act_source.isWhiteListed()	  &&	  

	  	  	  	  	  balance	  >=	  amount)	  {	  

	   	  act_dest.deposit(amount);	  

	   	  act_source.withdraw(amount);	  
	  }	  

}	  



Testing: The Challenges… (2) 

if	  (webinterface.getTransferRequest())	  {	  
	  if	  (webinterface.fromField.valid	  &&	  
	  	  	  	  	  webinterface.toField.valid	  &&	  
	  	  	  	  	  webinterface.amountField	  >	  0)	  {	  
	   	  transfer(	  
	   	   	  webinterface.fromField,	  
	   	   	  webinterface.toField,	  
	   	   	  webinterface.amountField);	  
	  }	  

}	  



Testing: The Challenges… (2) 

if	  (webinterface.getTransferRequest())	  {	  
	  if	  (webinterface.fromField.valid	  &&	  
	  	  	  	  	  webinterface.toField.valid	  &&	  
	  	  	  	  	  webinterface.amountField	  >	  0)	  {	  
	   	  transfer(	  
	   	   	  webinterface.fromField,	  
	   	   	  webinterface.toField,	  
	   	   	  webinterface.amountField);	  
	  }	  

}	  

•  Question 1: What values and accounts should we 
test the function on? 



Testing: The Challenges… (2) 

thread1.execute(transfer(joe,	  peter,	  1000));	  
thread2.execute(transfer(joe,	  peter,	  5000));	  
	  

	     

•  Question 2: What about non-determinism? 



Testing: The Challenges… (2) 
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Summary: Testing 

•  Pros: 
•  (Relatively) easy to set up 

•  Can be performed throughout the development phase 

•  (Usually) tests can be rerun across versions 

•  Cons: 
•  Difficult to generate paths intelligently 

•  Can only talk about what happens, not about what may 
happen 

•  We can (normally) never say “Correct” 



Verification Summary 

•  In an ideal world, we would like to ensure that our 
systems cannot fail… 

•  … but testing leaves out paths which may occur in 
practice. 



Some Observations… 

•  Observation 1: 
a.  Checking a whole system is usually computationally 

expensive… 

b.  But checking a single path is usually not (hence 
oracles in testing). 

•  Observation 2:  
a.  Generating a representative set of  paths is tough… 

b.  because the system may go through some other path 
which we may not have checked before. 



A Logical Conclusion… 

•  So why not: 
•  check properties only on certain execution paths 

•  but continue checking after deployment to ensure that 
any execution paths followed by the live system do not 
violate the property, 

•  and if  they do fix the system or just stop it. 



A Logical Conclusion… 

•  So why not: 
•  check properties only on relevant execution paths 

•  but continue checking after deployment to ensure that 
any execution paths followed by the live system do not 
violate the property, 

•  and if  they do fix the system or just stop it. 

runtime monitoring 
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So Finally, Runtime Verification 

•  Monitor what the system is doing… 

•  verifying that it does not violate any 
property. 

•  If  it does, stop the system or fix it. 



Summary: Runtime Verification 

•  Pros: 
•  We can say “The system never continues after failure.” 
•  Scales up. 
•  Easy to adopt. 

•  Cons: 
•  We can never say “The system is correct.” 
•  Overheads (time and memory) may be prohibitive. 
•  Can only talk about finite traces. 
•  Can only be performed at runtime. 
•  Does not remove bugs, but stops their consequences. 



Part II 
 

An Overview of  
Runtime Verification 
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Some Issues and Choices 

•  Where do we write the properties? 

•  How do we express the properties? 

•  Where does the verification code go? 

•  How does the verification code communicate with 
the main system? 



Writing Specifications 

•  Two primary options: 
•  Option 1: Inlining monitors 

•  Option 2: Separate specification from system 
description 



Inlining Specifications: 
Assertions 

function	  startTransaction(User	  u)	  {	  
	  assert(!u.isBlacklisted());	  
	  Transaction	  t	  =	  createTransaction();	  
	  if	  (u.isDormant())	  {	  
	   	  t.makePending();	  
	  }	  
	  assert(t.isActive());	  
	  return(t);	  

}	  



Inlining Specifications: 
Assertions with Additional Logic 

function	  beginTransaction(User	  u)	  {	  
	  Transaction	  t	  =	  createTransaction();	  
	  …	  
	  ongoingTransactions.add(t);	  

}	  
	  
function	  endTransaction(User	  u,	  Transaction	  t)	  {	  

	  assert(ongoingTransactions.hasItem(t));	  
	  …	  
	  ongoingTransactions.removeItem(t)	  
	  …	  

}	  



Separation of  Concerns 

•  Separating specification from the system 
requires additional work to weave the two 
together. 

System 

Specification 
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Separation of  Concerns: 
Program Transformations 

•  Tools exist to transform a program into another 
program in the same language 

•  Typically such tools access the abstract syntax tree of  
the source program, and produce the abstract syntax 
tree of  the destination program. 



Separation of  Concerns: 
Aspect-Oriented Programming 

•  Modular abstraction techniques e.g. object-oriented 
design aims at abstracting models – sharing common 
parts across the implementation. 

•  Sometimes, one modularisation strategy foregoes 
another, requiring code replication and the merging 
of  business-logic and support code. 

•  Aspect-oriented programming gives ways of  
changing code across a whole system in a modular 
way. 



Separation of  Concerns: 
Aspect-Oriented Programming 

•  Consider adding a logging feature for all types of  
money transfers, and which can be toggled or or off. 

•  Either we add a line to each transfer method: 
 void	  transfer()	  {	  	  
	   	  if	  (log.enabled)	  {	  log.write(“…”);	  }	  
	   	  ...	  
	  }	  

•  Or we can use an AOP tool and write: 
 @before	  call(*.transfer(..))	  
	   	  log.write(“…”);	  



Property Specification 
Languages 

•  Writing properties as assertions at particular points 
in the program is very restrictive: 
•  Choice of  points is purely syntactic, not semantic e.g. 

specifying “y should be 0 when x becomes 42”. 
•  Any reasoning about context has to appear as 

additional code intermingling with the system code e.g. 
“startTransaction should be called before endTransaction”. 

•  Richer logics enable implicit specification of  such 
context. 



Property Specification 
Languages 

•  Temporal logics enable reasoning about events as 
they happen over time. 

•  Basic events usually still control-flow (syntactic) 
rather than data-flow (semantic) due to overheads: 
•  upon starting a method call 

•  at the end of  a method call 

•  when an exception is raised 



Property Specification 
Languages: Automata 

•  Finite state automata (e.g. in the form of  UML 
diagrams) can be a good way of  allowing the 
specification of  consequentiality behaviour. 
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Property Specification 
Languages: Automata 

•  Access to system data enhances expressiveness... 

u.logout 

u.login | !u.isBlackListed() 

transfer(f)  | f.isPrivate() 



Property Specification 
Languages: Automata 

•  Access to system data enhances expressiveness and 
interaction with the system… 

u.logout 

u.login | !u.isBlackListed() 

transfer(f)  | f.isPrivate() | u.logout() 



Property Specification 
Languages: Automata 

•  Access to data enhances expressiveness and allows 
for more compact descriptions: 

insertCard() | | wpin=0 
 

withdrawCard() 

badPin() | wpin < 3 | wpin++ 

badPin() | wpin=3 

goodPin() 



Property Specification 
Languages: Logic-Based 

•  Textual logics, with a grammar, can be more 
effective in some settings. 

•  For instance, consider Regular Expressions… 



Property Specification 
Languages: Logic-Based 

•  Regular expressions can also be used for temporal 
specifications: 
 ::= event

| event
| ?
| 1
| 0
|  +  0

|   0

|  ⇤



Property Specification 
Languages: Logic-Based 

•  Regular expressions can also be used for temporal 
specifications. 

•  Examples:  
•  ?* login logout  
•  (login (write + read)* logout)* (read + write) 



Verification Algorithms 

•  Given a specification written in a particular logic, 
how can we automatically check whether a trace 
matches it? 

•  For online monitoring, the algorithm should ideally 
be incrementally computable from left to right. 

•  For offline monitoring this need not be the case, and 
more efficient parsing algorithms can be used. 



Verification Algorithms for 
Automata 

•  Consider the use of  automata for RV: 

LI LO B 
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Verification Algorithms for 
Automata 

LI LO B 

logout 

login 

transfer 

•  Instrumentation is straightforward: 

@before	  call(*.login(..))	  
	  if	  (state==LO)	  {	  state	  =	  LI;	  }	  

@before	  call(*.logout(..))	  
	  if	  (state==LI)	  {	  state	  =	  LO;	  }	  else	  
	  if	  (state==LO)	  {	  state	  =	  B;	  reportError();	  }	  

@before	  call(*.transfer(..))	  
	  if	  (state==LO)	  {	  state	  =	  B;	  reportError();	  }	  

 

 

logout 



Verification Algorithms for 
Logics 

•  Let us consider regular expressions again: 

 ::= event
| event
| ?
| 1
| 0
|  +  0

|   0

|  ⇤



Verification Algorithms for 
Logics 

•  One possibility is to translate regular expressions 
into automata. 

(login(transfer + balance)

⇤
logout)

⇤
trasfer
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•  One possibility is to translate regular expressions 
into automata. 
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Verification Algorithms for 
Logics 

•  Given a regular expression e to match, and the first 
event a, identify a regular expression f such that after 
a, we can equivalently match f. 

•  More precisely: Given property e, find e’  such that 
any trace aw matches e if  and only if  w matches e’. 

•  This together with an algorithm to check whether 
the empty trace matches property e suffices. 



Verification Algorithms for 
Logics 

•  Another possibility is to define a residual algorithm for 
regular expressions. 

•  Starting from a regular expression to match e, what 
remains to be matched after receiving a particular 
event e? 



Verification Algorithms for 
Logics 

(login (transfer + balance)* logout)* transfer 

→login→ 

(transfer + balance)* logout  
(login (transfer + balance)* logout)* transfer 

→logout→ 

(login (transfer + balance)* logout)* transfer 

→transfer→ 

MATCH! 

 

 

 



RV Architecture 

System 

Specification 

RV 
tool 

System 

Monitor 

Verifier 



RV Architecture 

System 

Specification 

RV 
tool 

System 

Monitor 

Verifier 

How do the verification 
modules communicate 

with the system? 
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RV Architecture: Synchronous 

function	  login(…)	  {	  

	  //	  main	  code	  

	  …	  

}	  



RV Architecture: Synchronous 

function	  login(…)	  {	  
	  Verifier.send(login,	  …);	  

	  result	  =	  Verifier.receive();	  

	  if	  (result	  ==	  OK)	  {	  

	   	  //	  main	  code	  

	   	  …	  
	  }	  

}	  



RV Architecture: Synchronous 

•  Synchronous monitoring guarantees that the system 
never advances beyond failure. 

•  Upon failure one can attempt to fix the problem 
since we are guaranteed to stop immediately after 
the failure. 

•  The cost in overheads can be prohibitive if  the 
volume of  monitored events is large. 
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RV Architecture: Asynchronous 

function	  login(…)	  {	  

	  //	  main	  code	  

	  …	  

}	  



function	  login(…)	  {	  
	  Verifier.send(login,	  …);	  

	  //	  main	  code	  

	  …	  

}	  

RV Architecture: Asynchronous 



•  Overheads limited to the cost of  logging events. 

•  If  there is complete independence between runtime 
and verification time, we can postpone the 
verification till after the whole trace has been 
generated and parse it in any way we want (e.g. for 
some past time logics, backward analysis is more 
efficient). 

•  Once failure is identified, we cannot do much more 
than notify the developers. 

RV Architecture: Asynchronous 



•  There are many design choices in RV: 
•  How to monitor (extract events) 

•  How to specify what to verify 

•  Where to specify what to verify 

•  How to verify 

•  How to connect the monitor with the verifier 

•  When to verify 

•  What to do with the outcome of  the verification 

RV Overview 
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•  Testing has been established as de rigeur practice in 
industry, with quality assurance being a crucial part 
of  the development cycle. 

•  Runtime verification is still far from being 
assimilated in software engineering development 
processes for a number of  reasons: 
•  Overheads can be prohibitive 
•  Requires the adoption of  new tools and development 

processes 
•  Requires re-training of  developers 
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industry, with quality assurance being a crucial part 
of  the development cycle. 

•  Runtime verification is still far from being 
assimilated in software engineering development 
processes for a number of  reasons: 
•  Overheads can be prohibitive 
•  Requires the adoption of  new tools and development 

processes 
•  Requires re-training of  developers 

Can we hinge on the success 
of  testing for software quality 

assurance to introduce 
runtime verification “for 

free”? 
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•  Recall some of  the major challenges testing faces: 
•  Generation: How to generate representative traces to 

test on? 

•  Validation: How to check that the system works well 
on these traces? 

•  Coverage: How to assess the coverage of  the traces 
over traces that will happen at runtime? 



Testing 

•  Recall some of  the major challenges testing faces: 
•  Generation: How to generate representative traces to 

test on? 

•  Validation: How to check that the system works well 
on these traces? 

•  Coverage: How to assess the coverage of  the traces 
over traces that will happen at runtime? 

This is a concern shared with 
runtime verification 



Generation and Validation 

•  Different approaches solve the generation and validation, 
typically combining the issues in a single framework e.g. 
•  Unit testing:  Test units (e.g. modules) separately, by 

mocking other parts of  the system – using test scripts 
specifying (i) the test cases; and (ii) oracles to check the 
results. 

•  Model-based testing: An abstract model of  the system under 
test is built and abstract test cases defined (manually or 
automatically) from which concrete test cases are generated 
and run against the real system to compare the output with 
that of  the model. 



Generation and Validation 

•  We have two languages implicitly defined: 
• The language T of  testable traces from 

which we will generate elements. 
• The language Y (or N) of  correct (or bad) 

traces. 
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•  Example: 
• Testable traces T consist of  traces in which 

the user will trigger a sequence of  login, 
logout, read and write events but no reconnect 
events. 

• The set of  bad traces N consists of  all those 
in which the user tries to read or write 
without first logging in. 
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Generation and Validation 

•  Example: 
• Testable traces T consist of  traces in which 

the user will trigger a sequence of  login, 
logout, read and write events but no reconnect 
events. 

• The set of  bad traces N consists of  all those 
in which the user tries to read or write 
without first logging in. 

 

Is this trace a violation? 
 

login . read . logout . reconnect . write 
It is in N, but… 

not in T… 
i.e. the testing tool would never  

identify this as a violation 
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•  Question: How can we use the testing 
specification (i.e. T and N or Y) to construct 
a runtime verifier to match bad traces (i.e.   
T∩N or T \Y)? 



RV and Testing 

•  Question: How can we use the testing 
specification (i.e. T and N or Y) to construct 
a runtime verifier to match bad traces (i.e.   
T∩N or T \Y)? 

•  We will be doing this for two particular 
technologies: QuickCheck and LARVA. 



QuickCheck 

•  QuickCheck is a model-based testing tool originally 
built for Haskell, now available for Erlang, C, etc.  

•  Works through random test case generation using 
QuickCheck Finite State Automata (QCFSA). 

•  QCFSAs serve both for generation and validation of  
traces: 
•  Generation through directed (semi-random) traversal  
•  Validation through specification of  postconditions 

associated with each transition 



QuickCheck 

•  Example: Consider a mobile phone credit 
top-up system 
•  message() costs 1 credit, returns false on 

failure.  

•  recharge() adds 10 credits to the account, 
returns new credit.  



QuickCheck Automata 
Motivation Testing Runtime Verification Combining Techniques Results and Conclusions

QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.
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credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

The precondition: the 
transition can only be 

taken if  the precondition 
is true  
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QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

The invocation: A 
function to invoke when 

taking the transition 
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QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

The postcondition: Will be 
checked upon termination of  the 
invocation – will cause a failure 

if  it returns false 
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QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.

The action: The action is 
taken after checking the 

postcondition, before 
proceeding further with the 

automaton. 
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QuickCheck: Messaging Portal Example

broke charged

true\recharge()\Result > 0\credit += 10

true
\ recharge()
\ Result == credit + 10
\ credit += 10

credit > 0
\ message()
\ ¬Result _ credit � 0
\ if (Result) then credit��

credit == 0\message()\¬ Result\ •

A mobile phone credit top-up system

message() costs 1 credit. Returns false on failure.

recharge() adds 10 credits to the account. Returns new
credit.



LARVA 

•  LARVA is a synchronous runtime 
verification tool, originally built for Java, 
but with a version also available for 
Erlang. 

•  Uses DATEs (Dynamic Automata with 
Timers and Events) to give a specification. 



LARVA Automata 

Combining Testing and Runtime Verification Techniques 7

names used in QuickCheck automata to invoke their execution, references to function
names in DATEs are used to match against observed system behaviour, and we distin-
guish between the moment of entry and exit to a function. For this reason, monitoring
automata will be tagged by event observations such as f # and f " and not invocations
such as f �. For example, a transition labelled by event f # will be triggered whenever
the system control enters function f (no matter what parameters it receives). Note that
in the case of a recursive function f , a single invocation f � may trigger such transitions
multiple times.

Definition 6. A symbolic event-based automaton over function names � and running
with a system with state ⇥ is a quadruple hQ, q0, t, Bi with set of states Q, initial state
q0 2 Q, transition relation t and bad states B ✓ Q.

Transitions are labelled by: (i) the event in �l which triggers it; (ii) a guard con-
dition — corresponding to predicate over the parameter passed to the function and
the system state and which determines whether the transition can be followed: 2X⇥⇥;
(iii) an action (also parametrised over the values passed to the function as parameters)
which may change the system state: X ⇥⇥! ⇥. The transition relation t thus satisfies:
t ✓ Q ⇥�l ⇥ 2X⇥⇥ ⇥ (X ⇥ ⇥! ⇥) ⇥ Q.

It is assumed that bad states are sink-states, and thus do not have any outgoing
transitions, and that there is an implicit total ordering on the transitions.

In this exposition, we assume that the function return values reside in the system
state space ⇥, which may also include information used by monitoring (e.g. to keep
track of a counter), but which will not interact directly with the system.

Example 2. Consider a system which should ensure that if a user logs in using an ac-
count with priority level of 3 or less, he or she may not delete records. We will assume
that logins occur using a function login which takes takes a parameter plevel, and record
deletion happens upon executing function delete.6 A DATE which verifies this property
is shown in Figure 2.

login# | plevel  3 | • delete# | true | •

Fig. 2. Monitoring for unauthorised deletion

Note that each transition in the diagram is tagged by three bar-separated expres-
sions identifying (i) the triggering event; (ii) the guard; and (iii) the action to be taken,
respectively. Whenever no action is to be taken we still tag the transition with • so as to
aid comprehensibility. Bad states are annotated by using a double circle node.

6 We also abuse the predicate notation here and write predicates as expressions rather than as
the set of parameter and system state pairs which satisfy the guard condition.
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Event: The transition 
can only be taken when 
the system triggers the 

event. 
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Condition: When the event 
occurs, the condition has to 
be satisfied for the transition 

to be taken. 
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Action: When the 
transition is taken, the 

action is executed. 
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After blocking port p, no data transfer may occur 
on that port. 

 

 

 
Since blocking a port and transfering data may be 
concurrently accessed, transfer may not be entered only once 
block terminates.  

8 K. Falzon and G. J. Pace

Example 3. As a more complex example, consider a system in which, after blocking a
port p (using the function block(port)), no data transfer may occur on that port (using
function transfer(port)). Since the function to block a port and to transfer data may be
concurrently accessed, we will enforce that only once the block function terminates,
transfer may not be entered. Figure 3 shows how such a property may be monitored.

q0 qb

block" | true | addToBlocked(port)

transfer# | isBlocked(port) | •

Fig. 3. Monitoring for transfers over a blocked port

There are di↵erent ways of encoding this property. The approach illustrated uses
just two states — an initial one q0 and bad state qb. As long as the monitor is in state
q0, event block" (with no guard) performs an action which adds the port appearing as
parameter to a set of blocked ports and goes back to state q0. On the other hand, any
transfer in which the port given as parameter appears in the set of blocked ports will
take the monitor to state qb:

Definition 7. The configuration C of a symbolic event-based automaton M = hQ, q0, t,
Bi is a monitor-state and system state: C 2 Q ⇥ ⇥. We write (q, ✓)

ex�!M (q0, ✓0) (with
e being of the form f # or f ") if: (i) there is a transition from q to q0 with event e:
(q, f , cond, action, q0) 2 t; (ii) whose guard is satisfied on parameter x: cond(x, ✓); (iii)
the transition is the one with the highest priority with a matching event and satisfied
condition; and (iv) changes the state to ✓0: action(x, ✓) = ✓0.

Note that the total ordering on the transitions, used to choose the one with the high-
est precedence, ensures that the automaton is deterministic.

Definition 8. The language of bad traces of a symbolic event-based automaton M =
hQ, q0, t, Bi for a system starting in state ✓0 2 ⇥, written B✓0 (M), is defined to be the set
of strings over �lX such that ↵̂1↵̂2 . . . ↵̂n 2 B✓0 (M) if and only if there are intermediate

configurations such that: (q0, ✓0)
↵̂1��!M (q1, ✓1)

↵̂2��!M . . .
↵̂n��!M (qn, ✓n), and qn 2 B.

3 From Validation to Verification Automata

Even at a syntactic level, the automata used for testing and those used for runtime
verification di↵er: while references to functions in testing automata are prescriptive,
identifying which functions are to be invoked, references in the monitoring automata
act as guards which trigger upon invocation or termination. The di↵erence arises from
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Splitting QCFSA Transitions: Example

broke charged

true\recharge()\Result > 0\credit += 10

The following example will illustrate the splitting of a QCFSA
transition into events

Precondition checked on function invocation (entry event)

Postcondition evaluated on function return (exit event)
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Splitting QCFSA Transitions: Example

broke charged QCFSA

credit � 0\recharge()\Result > 0\credit+=10

+

broke broke0 charged

bad⇤

DATE

recharge

# | credit � 0 | • recharge

" | Result > 0 | credit+=10

recharge

" | ¬(Result > 0) | •



QuickCheck Specifications to 
LARVA Automata 

Theorem: Given a QuickCheck automaton 
M, there exists a DATE D which will 
recognise all and only the negative traces 
which can be generated by M.  



Limitations 

•  Test cases are sometimes very specific and not 
generalised. 

•  Tests sometimes give high importance to borderline 
cases increasing overheads for rare instances. 

•  In some cases, the approach would fail: 
•  Equivalence partitioning: Partitions test space into parts 

such that testing one trace in each partition – other 
cases, although relevant, are not caught by the monitor. 

•  Regression testing: Focuses on finding faults on code 
changes. Tests may be localised to changes in code, thus 
severely limiting coverage. 



Conclusions 

•  Oracles in runtime verification and testing 
serve an identical purpose… 

•  But generation comes for free in runtime 
verification making testing-to-runtime 
verification easier. 

•  Still, tests have to be built with runtime 
verification in mind to maximise return. 

•  Similar work combining JUnit and runtime 
verification identified similar issues. 
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