
QuickCheck
Koen Lindström Claessen

QuickCheck

●  A testing library for Haskell in 2000
o  Koen Claessen
o  John Hughes

●  Now the “standard” way of testing Haskell

programs

●  Also: Erlang, C, C++, Java, OCaml, Python,
Isabelle, Coq, ...

Quviq AB

●  A testing company founded in the early
2000s

●  Commercial version of Erlang QuickCheck
o  State machines
o  Property libraries for industrial applications
o  ...

QuickCheck Success Stories

PULSE -
Concurrent
Software

XMonad,
darcs

Compiler
testing

model
checkers

QuickCheck

●  Properties
o  one aspect of functionality of the code

●  Random test data

o  Each time you get a new test case
o  Library for crafting generators

●  Shrinking

o  Understanding the failing case
o  (Avoid getting to the same failing case every time!)

Testing Implementations
of Complex Algorithms

using contrapositive testing, inductive
testing, and co-inductive testing

Koen Lindström Claessen

Chalmers, Gothenburg, Sweden
and Utrecht University

System Under
Test

test
cases

Oracle

ok?

Oracle

●  Simple
o  Simpler than the implementation

●  Practically runnable

o  May need to run many tests

●  Oracle should be “complete”
o  For any faulty implementation, there should exist

inputs that trigger the oracle to say “no”

Shortest Path Algorithms

type	
 Map	

type	
 Point	

type	
 Path	

	

	

shortest	
 :	
 (Map,	
 Point,	
 Point)	
 -­‐>	
 Maybe	
 Path	

(
 solve	
 :	
 Problem	
 -­‐>	
 Maybe	
 Solution	
)	

●  The oracle needs to know what the shortest
path is

●  We can be simple, but it is too slow
o  Not practical when testing
o  (Non-termination!)

●  We can be fast, but it is too complex

o  We may not trust our test results

Problem

Property-based Testing

(a la QuickCheck)

Sound - If an answer is produced, it should
be an actual solution

Complete - If no answer is produced, there
indeed was no actual solution

Optimal - If an answer is produced, there is
no actual solution that is better

Complete - If no answer is produced, there
indeed was no actual solution

Complete’ - If there is a solution, some
answer will be produced

logically equivalent

testable

ForAll x . A(x) ==> B(x)

ForAll x in “A”. B(x)

ForAll mp,a,b .
 hasPath mp a b ==>
 isJust (shortest (mp, a, b))

ForAll mp,a,b in hasPathMap .
 isJust (shortest (mp, a, b))

logically equivalent

testable

Optimal - If an answer is produced, there is
no actual solution that is better

Optimal’ - If there is a solution, then no
worse answer will be produced

?

Contrapositive testing

●  Change your viewpoint

o  From: Stimuli / System Under Test / Oracle

o  To: Logical implication

●  And take the contrapositive view to get new

inspiration

●  Sometimes, you have a choice! (How to
make it?)

Contrapositive Testing

?

Shortest Distance
Algorithms

type	
 Map	

type	
 Point	

data	
 Distance	
 =	
 Inf	
 |	
 Fin	
 Int	

	

	

distance	
 :	
 (Map,	
 Point,	
 Point)	
 -­‐>	
 Distance	

Sound - If an answer is produced, it should
be an actual solution

Complete - If no answer is produced, there
indeed was no actual solution

Optimal - If an answer is produced, there is
no actual solution that is better

ForAll	
 mp,a,a	
 .	

	
 	
 distance(mp,a,a)	
 ==	
 Fin	
 0	

ForAll	
 mp,a,b	
 .	

	
 	
 distance(mp,a,b)	
 ==	

	
 	
 	
 	
 minimum	
 [
 distance(mp,a’,b)	
 +	
 d	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 |	
 (a’,d)	
 <-­‐	
 neighbors(mp,a)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
]	

●  Correctness: by induction
o  soundness: induction over actual distance
o  completeness: induction over function answer

●  Induction principle

o  choose this for enabling testing
o  independent of implementation (unlike proving)

●  Induction vs. recursion in implementation

o  too slow to use directly (even non-terminating)
o  Plotkin induction

Inductive Testing
What happens

to fault
distribution?

Testing SAT-solvers

●  If model and proof are generated
o  Direct soundness
o  Direct completeness

●  If only model is generated when found

o  Direct soundness
o  Contrapositive testing for completeness

●  If only yes/no answer

o  Inductive testing
o  Base case: no variables
o  Step case: branch on a variable

Testing SAT-solvers

Testing Sorting

●  Write down the simplest sorting function you
can think of
o  You trust this code

●  Show that the function you want to test has

the same behavior
o  How?

Testing sorting functions

Testing FFT
implementations

●  Using exact arithmetic
o  Implementation is still fast
o  Specification is extremely slow

●  Base cases

o  vectors [0,..,0,1,0,..,0]

●  Step cases
o  a * fft v = fft (a*v)
o  fft v + fft w = fft (v + w)

Testing FFT

Testing Model Checkers
for Safety Properties

Circuit

bad

s s’

s0

check : (State, Circuit) -> Bool

False: The circuit is
not safe; often

produces a trace

True: The circuit is safe;
(produces nothing)

ForAll s, C .
 check(s, C) ==>
 ForAll inp .
 let (ok, s’) = step(s, C, inp) in
 ok && check(s’, C)

step : (State, Circuit, Input) -> (Bool, State)

a ≤ F(a)

a ≤ gfp x . F(x)

●  Correctness
o  Safety is defined as greatest fixpoint
o  Most natural is to use coinduction

o  Can also use induction (over the length of the shortest missed countertrace)

●  Efficiency
o  Model checker is called twice for each test

●  Break away from the stimuli / system under
test / oracle view

●  Look at the logical meaning of the property
●  Use proof techniques to “break up” into

smaller properties
o  Together, they imply the original property
o  They may be easier to test
o  The system may be run several times

●  What happens to the distribution of faulty
test cases?

Inductive Testing

Ongoing Work

●  More examples
o  Testing compilers / interpreters
o  Theorem provers for decidable logics
o  Theorem provers for semi-decidable logics
o  Unification algorithm
o  Distributed systems
o  …

●  Develop “testing logic”
o  Logical equivalence
o  Testing non-equivalence
o  Cost of testing
o  Predict which testing ways are most effective

