
Model-Based Testing
(DIT848 / DAT260)

Spring 2015
Lecture 7

Introduction to MBT

Gerardo Schneider
Department of Computer Science and Engineering

Chalmers | University of Gothenburg

Many slides based on material provided by Mark Utting
 1

What have we seen
�  V&V: Validation &

Verification
�  The V model
�  Black box testing
�  White box testing
�  Something on coverage

�  (Extended) Finite State
Machines

2

The rest of the lectures: MBT

1.  Introduction (concepts,
terminology,…) – Today

2.  How to select your tests –
Today

3.  Graph theory for MBT – Wed
this week

4.  ModelJUnit – Wed this week

5.  Making your tests executable –
Wed this week

6.  QuickCheck (by Koen Claessen)
NEW: Guest lectures!!

�  Runtime Verification (Mon May 11)

�  Behavoural-Driven Development (Wed May 13)

What remains

Kinds of Testing

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Testing

Functional

Usability

Performance

Robustness

Component

Integration

System

Scale of SUT

Unit

Tests derived from...

Characteristics being tested

(Black Box) (White Box)
CodeRequirements

Model
Based

3

What is Model-Based Testing
Four main approaches known as MBT

1.  Generation of test input data from a domain model
�  Information on the domain of input values
�  Not known whether test passess or not

2.  Generation of test cases from an environmental model
�  Environment: expected usage of SUT, operation frequences…
�  Do not specify expected output

3.  Generation of test scripts from abstract tests
�  Abstract description of test cases (eg. UML seq. Diag.)
�  Transforms abstract test cases into low-level executable script

4.  Generation of test cases with oracles from a behavior model
�  Executable tests with expected output
�  Model must describe expected behavior of SUT

Our
focus!

4 So… MBT is the automation of the design of black-box tests

MBT in context…

When designing functional
testing, 3 key issues:

1.  Designing the test case

2.  Executing the tests and
analyzing the result

3.  Verifying how the tests
cover the requirements

Different testing processes

1.  Manual testing process

2.  A capture/reply testing
process

3.  A script-based testing
process

4.  A keyword-driven
automated testing process

5.  The MBT process

5

Preliminaries: notation…

System under Test

Informal Document

Formal Document

Test Designer

Manual Tester

Programmer

Manual Activity

Automated

Interact with ToolReport Software Tool

Source: M. Utting and B. Legeard, Practical Model-Based Testing
6

Scripts

RequirementsRequirements

Results
Test

System
under
Test

Results
Test

Execution
Test

System
under
Test

Capture/Replay Tool

Test Plan Test Plan

Test Cases Test Cases

Design
Test

Execution
Test

Design
Test

Test

1. Manual Testing

+ easy & cheap to start

+ flexible testing

-  expensive every execution

-  no auto regression testing

-  ad-hoc coverage

-  no coverage measurement

Source: M. Utting and B. Legeard, Practical Model-Based Testing
7

Scripts

RequirementsRequirements

Results
Test

System
under
Test

Results
Test

Execution
Test

System
under
Test

Capture/Replay Tool

Test Plan Test Plan

Test Cases Test Cases

Design
Test

Execution
Test

Design
Test

Test

2. Capture-Replay Testing

+ flexible testing
-  expensive first execution
+ auto regression testing
- fragile tests break easily
-  ad-hoc coverage
-  no coverage measurement
-  low-level recorded tests
NOTE: Mostly used to automate
testing of graphical user interface
(GUI)

Source: M. Utting and B. Legeard, Practical Model-Based Testing
8

3. Script-Based Testing

+/- test impl. = programming

+ automatic execution

+ auto regression testing

-  fragile tests break easily?

 (depends on abstraction)

-  ad-hoc coverage

-  no coverage measurement

Source: M. Utting and B. Legeard, Practical Model-Based Testing
9

4. Keyword-Driven Testing
+ abstract tests

+ automatic execution

+ auto regression testing

-  robust tests

-  ad-hoc coverage

-  no coverage measurement

-  manual design of test data
and oracle
Note: action keywords (the “adaptor”)
allowing translate sequence of keywords
and data into executable tests

Source: M. Utting and B. Legeard, Practical Model-Based Testing
10

1.  Model the SUT and/or its environment
�  Write some abstract model / annotate with relationship

between tests and requirements

2.  Generate abstract tests from the model
�  Chose some test selection criteria to generate tests from the

model. Coverage and results refer to the model!

3.  Concretize the abstract tests to make them executable
�  Use a transformation tool to get concrete tests (on the SUT)

from the abstract tests from the model

4.  Execute the tests on the SUT and assign verdicts

5.  Analyze the test results (and take corrective action)
�  A fault in the test case might be due to a fault in the adaptor

code or in the model

5. Model-Based Testing

11

5. Model-Based Testing
+ abstract tests

+ automatic execution

+ auto regression testing

+ auto design of tests

+ systematic coverage

+ measure coverage of
model and requirements

- modeling overhead

Source: M. Utting and B. Legeard, Practical Model-Based Testing

5) Analyse

2) Generate

Test Script
Generator

Test Cases

3) Concretise

Test Plan

Requirements

1) Model

Model
Coverage

Matrix
Req. Trace.

4) Execute

Model

Test Execution Tool
Adaptor

Test Scripts

Test Case
Generator

Results
Test

System
under
Test

Important: usually first
abstract tests -> needs to
get concrete tests: adaptor!

12

Building Models…

Reusing existing
development model

�  100% reuse; not
always possible:
1.  Develop.

models usually
contains too
much detail

2.  Usually don’t
describe the
SUT dynamic
behavior

�  Not abstract
enough yet
precise enough
for test
generation

Reusing or building from scratch?

Developing model
from scratch

�  0% reuse

�  Maximize
independence

�  A lot of effort

Reuse something

�  Some x% of
reuse (0<x<100)

�  Eg. reuse high-
level class
diagram and some
use cases; add
behavioral details

Whatever approach: relate your model to
the informal requirements as close as
possible!

13

Benefits of MBT
1.  SUT Fault detection

�  Increase the possibility of finding errors

2.  Reduced testing cost and time
�  Less time and effort spent on writing tests and analyzing results
�  Could generate shortest test sequences

3.  Improved test quality
�  Possible to measure the ”quality” by considering coverage (of model)

4.  Requirements defect detection
�  Modeling phase exposes requirements issues

5.  Traceability
�  Between requirements and the model
�  Between informal requirements and generated test cases

6.  Requirements evolution
�  Update test suite to reflect new requirements: update model and

do it automatically

14

Limitations of MBT
1.  Cannot guarantee to

find all differences
between the model and
the implementation

2.  Need of skilled model
designers: abstract and
design models

3.  Mostly (only) for
functional testing

4.  Some tests not easily
automated: eg.
installation process

After you adopt MBT:

1.  Outdated requirements
�  Might build the wrong model

2.  Inappropriate use of MBT
�  Parts difficult to model; may

get the wrong model

3.  Time to analyze failed tests
�  It may give complex test

sequences

4.  Useless metrics
�  Number-of-tests metrics

not useful (huge number!) –
other metrics needed

15

How to model your system?
1.  Decide on a good level of abstraction

�  What to include and what not to

2.  Think about the data it manages, operations it performs, subsystems,
communication…
�  Maybe start from a UML class diagram?
�  Be sure you simplify your class diagram! (simpler for testing than for

design!)

3.  Decide notation

4.  Write the model

5.  Ensure your model is accurate
�  Validate the model (it specifies the behavior you want)
�  Verify it (correctly typed and consistent)

6.  Use your model to generate your tests
16

Notations for modeling
Seven possible ”paradigms”

1. Pre/post (state-based)

Snapshot of internal state of the
system + operations

�  B, Z, UML OCL,m VDM,

2. Transition-based

�  FSMs, statecharts, LTS, I/O
automata

4. Functional

Collection of mathematical functions

�  FOL, HOL

3. History-based

Allowable traces if behavior
over time

�  MSC, sequence diagrams, …

5. Operational

Collection of executable parallel processes

�  CSP, CCS, Petri nets, PI-calculus

6. Statistical

Probabilistic model of the event and input
values

�  Markov chains

7. Data-flow

�  Lustre, Block diagrams in Simulink
17

Choosing a notation
For MBT, transition-based and pre/post notations are the most used

Data-oriented systems have
state variables, rich types (sets,
relations, sequences,…).

Operations to access and
manipulate data

Data-oriented systems are most
easily specified using pre/post
notations

�  Eg. B, having powerful
libaries of data structures

�  Guidelines: Is the system data-oriented or control-oriented?

In control-oriented systems the
set of available operations depends
on the state

Control-oriented systems are most
easily specified using transition-
based notations

�  Eg. FSMs

Note 1: Possible to use transition-based
notations for data-oriented systems:
handle data structures too (eg. EFSMs)

Note 2: In MBT the model should be
formal!

Our focus in this
course:

transition-based
notations! 18

Drinking Vending Machine (DVM)
Case Study

Requirements:

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Utting & Legeard book:
sec 3.2, pp.66!

19

Source: M. Utting and B. Legeard, Practical Model-Based Testing

DVM case study
Use case Utting & Legeard book:

Use Case 3.1, pp.67!

20

DVM case study
High-level design

Source: M. Utting and B. Legeard, Practical Model-Based Testing

balance:0..200

insertCoin(Integer)

outOfService()
selectDrink(Integer)
returnButton()

putInService()
setPrice(Integer,Integer)

1

1

MESSAGE
<<enumeration>>

InsufficientFunds
DrinkNotAvailable
OutOfService

ShowBalance

Controller
<<SUT>>

setPrice(Integer)
release()

avail:Boolean
8
drink

coins
1

{ordered}

DrinkShelf

CoinBox

keepCoin()
rejectCoin()

display:MESSAGE
price:Integer

giveChange(Integer)

<<events>>

UML class diagram:

We need a high-level architecture of the DVM: how the
controller interacts with other components

21

DVM case study
What’s next?

We need to write a model ”for testing”!

�  Informal description, use cases, high-level design, etc.
give us an idea of what a DVM controller does

�  But… do not specify all the input conditions,
alternatives, exception cases, we want to test

�  Not precise enough for test generation

22

�  Come up with a finite state machine (FSM) that
models the Controller component of the DVM
�  Start with a machine for the money operation

insertCoin and returnButton

Groups 2-5 persons: 15 min

DVM – Transition-based model
Group exercise

23

DVM – FSM model
Partial solution to FSM for the DVM money operation

(insertCoin, returnButton)

insertCoin(100)

0 50 100 150 200

insertCoin(50) insertCoin(50) insertCoin(50) insertCoin(50)

insertCoin(100)insertCoin(100) insertCoin(100)

returnButton
returnButton

returnButton

returnButton
returnButton insertCoin(100)

insertCoin(100)

Source: M. Utting and B. Legeard, Practical Model-Based Testing
24

�  You will need to come with more complex transition-based notations (UML state
machine diagrams, EFSMs, etc.) for a full solution useful for test generation

Btw, anything wrong with the proposed solution?

�  2 transitions insertCoin(100) from state ”200”
�  Correction: insertCoin(100) + insertCoin(50)

insertCoin(50)

DVM – FSM model
Some comments…

insertCoin(100)

0 50 100 150 200

insertCoin(50) insertCoin(50) insertCoin(50) insertCoin(50)

insertCoin(100)insertCoin(100) insertCoin(100)

returnButton
returnButton

returnButton

returnButton
returnButton insertCoin(100)

insertCoin(100)

Source: M. Utting and B. Legeard, Practical Model-Based Testing
25

How to interpret the loops in states 150 and 200?
1.  Nothing happens -> the content of the cash box doesn’t change

2.  Wrong in state 150 -> add a transition with insertCoin(100) from 150 to
200 and interpret state 200 as “containing at least 200”

�  In both cases: Underspecified what happens with the coins (change needs to
be given) -> fix when full model

insertCoin(50)

Better!

Pre/Post models in B… in 1 slide
�  The B abstract machine notation: formal modeling notation for

specifying software
�  High-level libraries of data structures
�  Code-like notation for post-conditions

�  Development starts from an abstract model
�  High-level function view

�  Write a series of increasingly detailed designs: refinement

�  B supports tools for automatic generation of proof obligations
to prove correct refinement

�  MBT using B: checks the model against the implementation, but
via testing (does not guarantee to find all errors)!

26

DVM – B model

Source: M. Utting and B. Legeard, Practical Model-Based Testing

Partial: models
money only

Utting & Legeard book:
listing 3.1, pp.80!

27

||: Multiple assignments

reject: output var
insertCoin: name operation
coin: input var

What follows only holds
provided the precondition
holds

Invariant: doesn’t change
in the program

MBT – How to do in practice?

�  Next lecture on how to select your tests
�  More on coverage…

�  In practice: future lectures
�  Testing from (E)FSM
�  ModelJUnit

28

MBT – Summary
�  MBT is the automation of black-box test design

�  Test cases can be automatically generated from the model using MBT tools

�  The model must be precise and concise

�  Tests extracted are abstract; they must be transformed into executable tests

�  Not practically to (completely) reuse a development model for MBT

�  Transition-based notations: better for control-oriented systems

�  Pre/post notations: preferable for data-oriented systems

�  Possible to write partial models and refine
�  A very abstract model: few high-level tests covering few aspects of the system
�  A more detail model: tests covering more

The quality and number of tests that you get from MBT depend on the quality and
precision of your model

29

References

�  M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007
�  Chapters 1-3

30

