
Programming Language Technology

Exam, 15 April 2015 at 08.30–12.30 in M

Course codes: Chalmers DAT150/151, GU DIT231. As re-exam, also TIN321
and DIT229/230.
Teacher: Andreas Abel (tel. +49 176 400 333 23)

Grading scale: Max = 60p, VG = 5 = 48p, 4 = 36p, G = 3 = 24p.
Allowed aid: an English dictionary.
Exam review: will be announced on plt-2015-lp3 mailing list

Please answer the questions in English. Questions requiring answers in code
can be answered in any of: C, C++, Haskell, Java, or precise pseudocode.

For any of the six questions, an answer of roughly one page should be enough.

Question 1 (Grammars): Write a BNF grammar that covers the following
kinds of constructs in Java/C/C++:
• Statements:

– while loops
– if statements with else

– statements formed from expressions by adding a semicolon ;

• Expressions:
– identifiers
– integer literals
– preincrements (++x) or postincrements (x++) of identifiers (x)

An example statement is shown in question 2. You can use the standard BNFC
categories Integer and Ident. (10p)

Question 2 (Trees): Show the parse tree and the abstract syntax tree of the
statement

while (x++) if (cond) ++x ; else 5 ;

in the grammar that you wrote in question 1. (10p)

Question 3 (Typing and evaluation):

1. Write syntax-directed typing rules for the statements of Question 1: while,
if-else, statements from expressions. You can assume a typing relation
Γ ` e : t for expressions e and refer to it. (5p)

1



2. Write syntax-directed interpretation rules for the statements of Ques-
tion 1. The environment must be made explicit. You can assume an
interpreter for expressions γ ` e ⇓ 〈v; γ′〉 and refer to it. (5p)

Question 4 (Parsing): Consider the language S∗, i.e., (possibly empty) se-
quences of symbol S. Write two context-free grammars for it: one left-recursive
and one right-recursive. (4p) With both grammars, trace the LR parsing (i.e.,
the shift and reduce actions) of the string SSS. (4p) What is the difference in
stack size needed for parsing with the two grammars? (2p)

Question 5 (Compilation):

1. Write compilation schemes for each of the grammar constructions in Ques-
tion 1 generating JVM (i.e. Jasmin assembler). It is not necessary to re-
member exactly the names of the instructions – only what arguments they
take and how they work. (6p)

2. Give the small-step semantics of the JVM instructions you used in your
compilation schemes. (4p)

Question 6 (Functional languages):

1. Give the typing rules for simply-typed lambda-calculus! Simple types are
given by the grammar t ::= int | t→ t. (5p)

2. Give a type and a typing derivation for the term λf.λx. ((f x)x). (5p)

2


