Map-Reduce

John Hughes

The Problem

850TB in 2006

The Solution?



- Thousands of commodity computers networked together
- 1,000 computers → 850GB each
- How to make them work together?

Early Days

- Hundreds of ad-hoc distributed algorithms
 - Complicated, hard to write

. . .

- Must cope with fault-tolerance, load distribution,

MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat

In Symposium on Operating Systems Design & Implementation (OSDI 2004)

The Idea

- Many algorithms apply the same operation to a lot of data items, then combine results
- Cf map :: (a->b) -> [a] -> [b]
- Cf foldr :: (a->b->b) -> b -> [a] -> b

– Called *reduce* in LISP

• Define a *higher-order function* to take care of distribution; let users just write the functions passed to map and reduce

Pure functions are great!

They can be *run anywhere* with the same result—easy to distribute

• They can be *reexecuted* on the same data to recreate results lost by crashes

"It's map and reduce, but not as we know them Captain"

• Google map and reduce work on collections of *key-value pairs*

- map_reduce mapper reducer :: [(k,v)] -> [(k2,v2)]
 mapper :: k -> v -> [(k2,v2)]
 - reducer :: k2 -> [v2] -> [(k2,v2)]

All the values with the same key are collected

Usually just 0 or 1

Example: counting words

• Input: (file name, file contents)

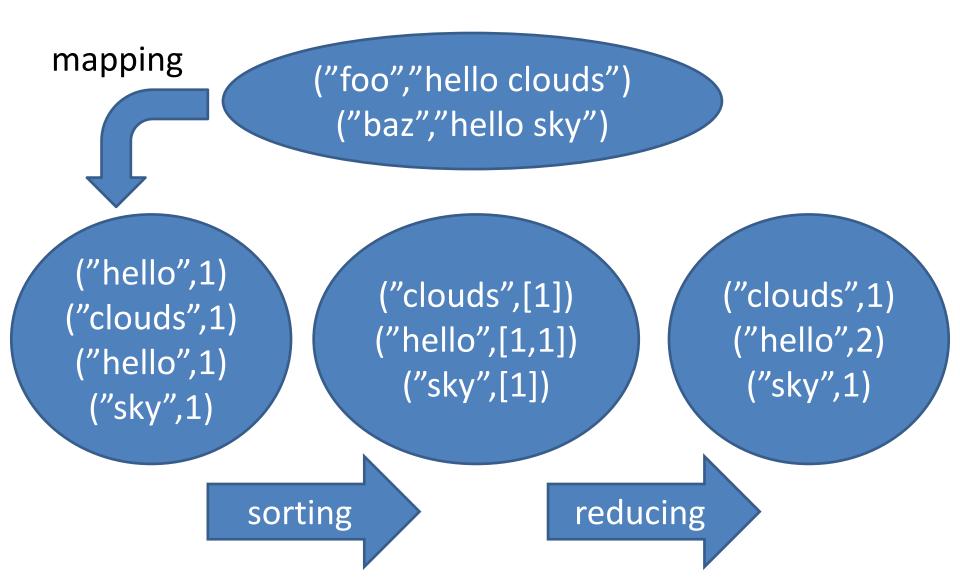
mapper

• Intermediate pairs: (word, 1)

reducer

• Final pairs: (word, total count)

Example: counting words



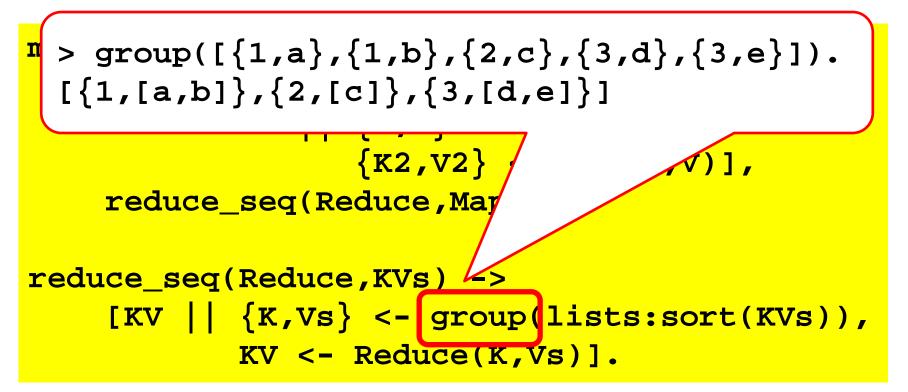
Map-reduce in Erlang

• A purely sequential version

```
[KV || {K,Vs} <- group(lists:sort(KVs)),
KV <- Reduce(K,Vs)].</pre>
```

Map-reduce in Erlang

• A purely *sequential* version



Counting words

mapper(File,Body) ->
 [{string:to_lower(W),1} || W <- words(Body)].</pre>

```
reducer(Word,Occs) ->
    [{Word,lists:sum(Occs)}].
```

```
count_words(Files) ->
    map_reduce_seq(fun mapper/2, fun reducer/2,
    [{File,body(File)} || File <- Files].</pre>
```

```
body(File) ->
   {ok,Bin} = file:read_file(File),
   binary_to_list(Bin).
```

Page Rank

```
mapper(Url,Html) ->
    Urls = find_urls(Url,Html),
    [{U,1} || U <- Urls].
reducer(Url,Ns) ->
    [{Url,lists:sum(Ns)}].
page_rank(Urls) ->
    map_reduce_seq(fun mapper/2, fun reducer/2,
        [{Url,fetch_url(Url)} || Url <- Urls]).
 Saves memory in sequential
```

map_reduce Parallelises fetching in a parallel one

Why not fetch the URLs in the mapper?

Page Rank

```
mapper(Url,ok) ->
    Html = fetch_url(Url),
    Urls = find_urls(Url,Html),
    [{U,1} || U <- Urls].
reducer(Url,Ns) ->
    [{Url,[lists:sum(Ns)]}].
page_rank(Urls) ->
    map_reduce_seq(fun mapper/2, fun reducer/2,
        [{Url,ok} || Url <- Urls]).
```

Building an Index

```
mapper(Url,ok) ->
  Html = fetch_url(Url),
  Words = words(Html),
  [{W,Url} || W <- Words].</pre>
```

```
reducer(Word,Urlss) ->
  [{Word,Urlss}].
```

```
build_index(Urls) ->
    map_reduce_seq(fun mapper/2, fun reducer/2,
      [{Url,ok} || Url <- Urls]).</pre>
```

Crawling the web

• Key-value pairs:

- {Url,Body} if already crawled

- {Url,undefined} if needs to be crawled

```
mapper(Url,undefined) ->
Body = fetch_url(Url),
[{Url,Body}] ++
[{U,undefined} || U <- find_urls(Url,Body)];
mapper(Url,Body) ->
[{Url,Body}].
```

Crawling the web

 Reducer just selects the already-fetched body if there is one

```
reducer(Url,Bodies) ->
  case [B || B <- Bodies, B/=undefined] of
  [] ->
     [{Url,undefined}];
  [Body] ->
     [{Url,Body}]
  end.
```

Crawling the web

 Crawl up to a fixed *depth* (since we don't have 850TB of RAM)

```
crawl(0,Pages) ->
   Pages;
crawl(D,Pages) ->
   crawl(D-1,
        map_reduce_seq(fun mapper/2, fun reducer/2,
        Pages)).
```

• Repeated map-reduce is often useful

Parallelising Map-Reduce

- Divide the input into M chunks, map in parallel
 - About 64MB per chunk is good!
 - Typically M ~ 200,000 on 2,000 machines (~13TB)
- Divide the intermediate pairs into R chunks, reduce in parallel
 - Typically R \sim 5,000

Problem: all {K,V} with the same key must end up in the same chunk!

Chunking Reduce

• All pairs with the same key must end up in the same chunk

Map keys to chunk number: 0...R-1
 – e.g. hash(Key) rem R

erlang:phash2(Key,R)

 Every mapper process generates inputs for all R reducer processes

A Naïve Parallel Map-Reduce

Spawn a

```
Mappers send
map_reduce_par(Map,M,Reduce,R,Input)
    Parent = self(),
                                             Spawn a
    Splits = split_into(M,Input),
    Mappers =
                                            reducer for
      [spawn_mapper(Parent,Map,P
       || Split <- Splits]
    Mappeds =
                                           Combine and
                            end
      [receive {Pid,L} ->
                                   Pid
    Reducers =
                                          sort the results
      [spawn_reducer(Parent, Re
       || I <- lists:seq()
    Reduceds =
      [receive {Pid, L} -> L end || Pid <- Reducers],
    lists:sort(lists:flatten(Reduceds)).
```

Mappers

```
spawn_mapper(Parent,Map,R,Split) ->
    spawn_link(fun() ->
      Mapped =
        %% tag each pair with its hash
        [\{erlang:phash2(K2,R), \{K2,V2\}\}
         || {K,V} <- Split,
            \{K2,V2\} <- Map(K,V)],
      Parent !
        %% group pairs by hash tag
        {self(),group(lists:sort(Mapped))}
    end).
```

Reducers

```
spawn_reducer(Parent,Reduce,I,Mappeds) ->
    %% collect pairs destined for reducer I
    Inputs = [KV]
               Mapped <- Mappeds,
                 {J,KVs} <- Mapped,
                 I = = J,
                 KV < - KVs],
    %% spawn a reducer just for those inputs
    spawn_link(fun() ->
      Parent !
        {self(),reduce_seq(Reduce,Inputs)}
    end).
```

Results

• Despite naïvety, the examples presented run *more than twice as fast* on a 2-core laptop

Why is this naïve?

• All processes run in one Erlang node—real map-reduce runs on a cluster

• We start *all* mappers and *all* reducers at the same time—would overload a real system

• All data passes through the "master" process—needs far too much bandwidth

Data Placement

Data is kept in the *file system*, not in the master process

- the master just tells workers where to find it

- Two kinds of files:
 - *replicated* on 3+ nodes, survive crashes
 - local on one node, lost on a crash
- Inputs & outputs to map-reduce are replicated, intermediate results are local
- Inputs & outputs are not collected in one place, they remain distributed

Intermediate values

 Each mapper generates R local files, containing the data intended for each reducer
 – Optionally reduces each file locally

• Each reducer reads a file from each mapper, by rpc to the node where it is stored

Mapper results on nodes which crash are regenerated on another node

Master process

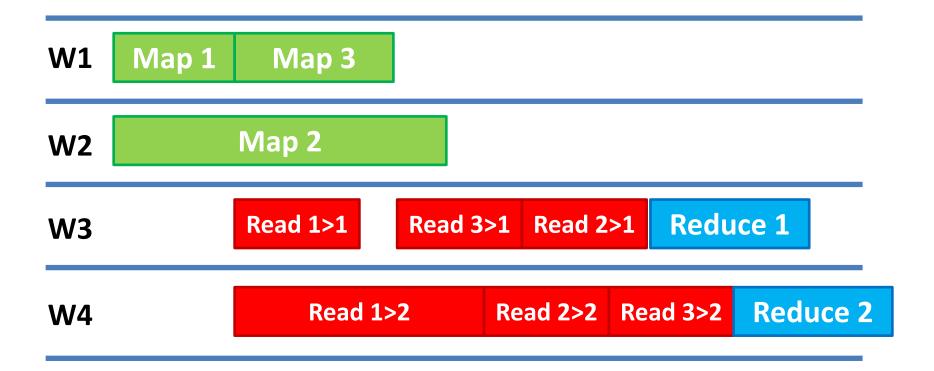
• Spawns a limited number of workers

• Sends mapper and reducer jobs to workers, sending new jobs as soon as old ones finish

• Places jobs close to their data if possible

• Tells reducers to start fetching each mapper output as soon as it is available

A possible schedule

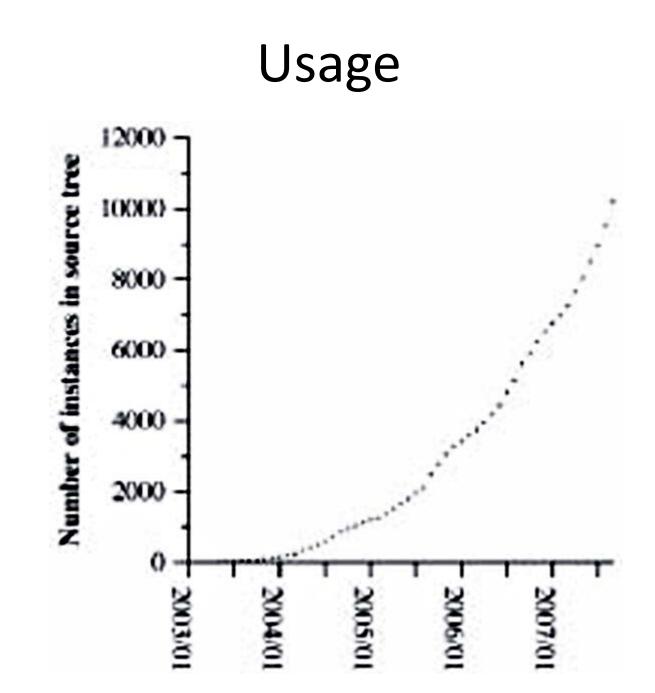


Each reduce worker starts to read map output as soon as possible

Fault tolerance

- Running jobs on nodes that fail are restarted on others (Need to detect failure, of course)
- Completed maps are rerun on new nodes
 because their results may be needed
- Completed reduce jobs leave their output in replicated files—no need to rerun
- Close to the end, remaining jobs are replicated
 - Some machines are just slow

"During one MapReduce operation, network maintenance on a running cluster was causing groups of 80 machines at a time to become unreachable for several minutes. The MapReduce master simply re-executed the work done by the unreachable worker machines and continued to make forward progress, eventually completing the MapReduce operation."



Google web search indexing **Before** After 3800 700 LOC LOC

Experience

"Programmers find the system easy to use: more than ten thousand distinct MapReduce programs have been implemented internally at Google over the past four years, and an average of one hundred thousand MapReduce jobs are executed on Google's clusters every day, processing a total of more than twenty petabytes of data per day."

> From MapReduce: Simplified Data Processing on Large Clusters by Jeffrey Dean and Sanjay Ghemawat, CACM 2008

Applications

- large-scale machine learning
- clustering for Google News and Froogle
- extracting data to produce reports of popular queries
 - e.g. Google Zeitgeist and Google Trends
- processing of satellite imagery
- language model processing for statistical machine translation
- large-scale graph computations.
- Apache Hadoop

Map-Reduce in Erlang

- Functional programming concepts underlie map-reduce (although Google use C++)
- Erlang is very suitable for implementing it
- Nokia Disco—www.discoproject.org
 - Used to analyze tens of TB on over 100 machines
 - Multiple masters
- Riak MapReduce
 - Improves locality in applications of the Riak no-SQL key-value store

Reading: one of

• The original OSDI 2004 paper (see earlier)

 MapReduce: simplified data processing on large clusters, Jeffrey Dean and Sanjay Ghemawat

In Communications of the ACM - 50th anniversary issue: 1958 – 2008, Volume 51 Issue 1, January 2008

A shorter summary, some more up-to-date info