
Algorithms Exam 1

Jan. 2 2015
kl 8:30 - 12:30
väg och vatten
salar

Ansvarig:
Bapi Chatterjee Tel. 031 772 1024 Rum 5103 EDIT

Points : 60
Grades: Chalmers 5:48, 4:36, 3:28

GU VG:48, G:28
PhD students G:36

Helping material : course textbook, notes

• Recommended: First look through all questions and make sure that you under-
stand them properly. In case of doubt, do not hesitate to ask.

• Answer all questions in the given space on the question paper (the
stapled sheets of paper you are looking at). The question paper will
be collected from you after the exam. Only the solutions written in
the space provided on the question paper will count for your points.

• Use extra sheets only for your own rough work and then write the final answers
on the question paper.

• Try to give the most efficient solution you can for each problem - your solution
will be graded on the basis of its correctness and efficiency – a faster algorithm
will get more credit than a slower one. In particular a brute force solution will
not get any credit.

• Answer concisely and to the point. (English if you can and Swedish if you must!)

• Code strictly forbidden! Motivated pseudocode or plain but clear English/Swedish
description is fine.

• Exam review dates: TBA

Lycka till!

12014 LP 1, DIT600 (GU) / TIN093 (CTH).

1

Problem 1 Stable Marriage [7] Recall the original stable marriage problem that we
discussed in the lectures, where each person has a strictly-ordered complete preference
over all members of the other gender.
Let us consider the following variation of the stable marriage problem. Each person
has a preference list as before. But the preference list needs not be complete (she/he
can declare someone to be totally unacceptable). A boy b puts girl g on his list if and
only if girl g puts b on her list. Furthermore, ties are allowed on the preference lists
(she/he can say multiple persons are equally good).
In this context, we define a blocking pair as follows. A boy b and a girl g are a blocking
pair in a matching M if any of the following conditions holds.

• Boy b and girl g are both matched in M . b strictly prefers g to his assigned
girlfriend M(b). g strictly prefers b to her assigned boyfriend M(g).

• Boy b is unmatched but girl g is matched in M . g is on the preference list of b
and g strictly prefers b to her assigned boyfriend M(g).

• Boy b is matched but girl g is unmatched in M . b strictly prefers g to his assigned
girlfriend M(b) and b is on the preference list of g.

A matching M without a blocking pair is stable.

Now give a polynomial time algorithm to find a stable matching. Argue that the found
matching is really stable. Show the running time of your algorithm. (Hint: Some
variation of the Gale-Shapley algorithm should work.)
(Sketch of the) Solution
Break the ties arbitrarily on both boys and girls’ preference lists and apply the G-S
algorithm. The running time is O(m), the total size of all preferences. Let M be the
outcome matching. We argue that there is no blocking pair of the first type. Suppose
not and (b, g) is one such pair. As b strictly prefers g, he must have been rejected by g
at some point (how the tie-breaking is done is irrelevant). g has done that because at
that point she had a boyfriend b′ who ranks at least as high as b (again the tie-breaking
is irrelevant), and her final boyfriend M(g) ranks at least as high as b′. So (b, g) cannot
be a blocking pair. The blocking pairs of the other two types can be argued similarly.

2

Problem 2 Smith Rule [8] Suppose that we are to schedule a set J of jobs on a sin-
gle machine. Each job j has a processing time pj and a weight wj . Jobs are processed
on the machine non-preemptively (that is, a job, once started, must be finished before
another new job starts). Our goal is to minimize the sum of the weighted completion
times. That is, we want to minimize

∑
j∈J wjCj , where Cj is the completion time of

job j. For example, assume that p1 = 3, p2 = 2, p3 = 6 and if we process by the order
of job 1, job 2, and then job 3, then C1 = 3, C2 = 5, and C3 = 11.

It is known that this problem can be solved by a greedy algorithm, often called the
Smith rule, which works by ordering the jobs based on the increasing ratio pj/wj . Prove
that this strategy gives the optimal solution. For simplicity, let us assume that all ratios
pj/wj are distinct.
(Sketch of the) Solution
It suffices to argue that in the optimal solution, if job α immediately precedes job β,
then pα

wα
<

pβ
wβ

. Suppose not. Then pα
wα

>
pβ
wβ

. The cost of the two jobs together is

wα(pα +X) + wβ(pβ + pα +X), (1)

where X is the starting of job α. Let us reverse the order of the two jobs (note that
then the cost of all other jobs remain unchanged) and the new cost of the two jobs is
then

wα(pα + pβ +X) + wβ(pβ +X). (2)

Observe that the expression in (2) is smaller than (1) since pα
wα

>
pβ
wβ

, a contradiction.

Problem 3 Recurrence [5] Solve the following recurrence: T (n) = 6T (n/4) +n and
T (0) = 0. Give the exact expression of T (n). Prove the correctness of your expression.
You can assume that n is a power of 4.
(Sketch of the) Solution

This can be shown by drawing the recursion tree. The root has the work of n, the
second level has 6(n/4) the third level has 62(n/42), and so on. Together we have

T (n) = n

log4 n∑
i=0

(
6

4
)i = O(n).

3

Problem 4 Flow and Cut I [16] Let G = (V,E) be a directed simple graph with
capacity c : E → R>0. Two special vertices s and t are the source and the destination.

(a) [8 pts] Suppose that all edge capacities c(e) is a multiple of α. Is it true that
the value of the maximum flow is also a multiple of α? And is it true that in a
maximum flow f , the flow f(e) on edge e is always a multiple of α? For both
questions, if your answer is yes, justify it; if your answer is no, show a counter-
example. (Hint: Think carefully how we prove the max-flow-min-cut theorem in
the lectures.)

(Sketch of the) Solution
The maximum flow has value a multiple of α. Consider the moment that the
Ford-Fulkerson stops when there is no augmenting path in the residual graph.
Let G′ be the subgraph of G reachable from s in the residual graph. The flow
value is exactly the sum of the capacity of the “forward arcs” from G′ to the
remaining graph. Since each forward arc has capacity the multiple of α, so would
the flow value be.

However, in a maximum flow, some edges may have flow that is not a multiple
of α. Consider a network with three vertices s, u, and t. There are two parallel
arcs from s to u, a single arc from u to t, all of which have capacity 1. There is
a maximum flow with 0.5 on both parallel arcs from s to u and 1 from u to t.

(b) [8 pts] Suppose that we have a set of students S1,· · ·, Ss, a set of projects P1 , · · ·,
Pp, a set of teachers T1, · · ·, Tt. A student is interested in a subset of projects.
Each project pi has an upper bound K(pi) on the number of the students that
can work on it. A teacher Ti is willing to be the leader of a subset of the projects.
Furthermore, he/she has a upper H(Ti) on the number of the students he/she
is willing to supervise in total. We assume here no two teachers are willing to
supervise the same project. The decision problem here is whether there is really
a feasible assignment without violating any of the constrains in K and in H.

Solve the decision problem. Prove the correctness of your algorithm. (Hint:
Max-Flow network should help.)

(Sketch of the) Solution
Create a vertex for each student and each teacher. For each project i, create two
vertices P ini and P outi . A source vertex has an arc of capacity 1 to each student
vertex. A student has an arc of capacity 1 to P ini if he is interested in project Pi.
Draw an arc from P ini to P outi with capacity K(Pi). An arc of infinity capacity is
drawn from P outi to Tj is the latter is willing to supervise that project. Finally,
there is an arc of capacity H(Tj) from teacher Tj to the sink.

There is a feasible assignment if and only if the constructed network has the
maximum flow value of s, the number of students. The correctness follows from
the observation that a flow of value s is a feasible assignment and vice versa.

4

Problem 5 Subset Sum [12] The following is the subset sum problem. Given a
set of numbers A = {a1, a2, · · · , an}, is there a subset of numbers A′ ⊆ A so that their
sum

∑
at∈A′ at is exactly C.

This problem can be solved by dynamic programming. Let us build a table P , where
the entry P (i, j) means: “is there a subset of {a1, a2, · · · ai} so that their sum is exactly
j”?

(a) [4 pts] How do we fill in the entry P (i, j)? Write down the recurrence.

(Sketch of the) Solution
For the base case, let P (0, j>0) be false and P (i>0, 0) be true.

For recursion, P (i, j) is true if P (i − 1, j) is true and, when C − aj > 0, if
P (i− 1, C − aj) is true, then let P (i, j) be true, Otherwise, it is set to false.

(b) [2 pts] The number of the rows in the table P is clear—just n. But how many
columns are necessary? Justify it.

(Sketch of the) Solution

The number of columns needed is C, since this is the required solution.

(c) [2 pts] After you fill in all the entries, how do you find the answer to the original
problem? (Notice that you only need to answer yes or no. If the answer is yes,
you do not need to tell what that exact subset is.)

(Sketch of the) Solution
Check the entry P (n,C).

(d) [4 pts] What is the running time of your algorithm? Is it really polynomial? If
not, under what condition will your algorithm be really polynomial?

(Sketch of the) Solution
It takes O(nC) time. This is pseudo-polynomial. But it is polynomial if C =
O(nO(1)).

Problem 6 NP-Completeness [12] For the following two problems, you should
argue that (1) they belong to the class of NP, and then (2) prove that they are NP-
complete by reduction.
Let G = (V,E) be a graph. A valid coloring means that we assign a color to each
vertex and no two neighboring vertices have the same color. Of course there is always a
valid coloring—unless we put a limit on the number of colors we are allowed to use. In
the k-coloring problem, we are asked to decide whether there is a valid coloring using
at most k colors. It is known that 3-coloring problem is NP-complete.

5

(a) [6 pts] Show that the 5-coloring problem is NP-complete. (Hint: Apparently, the
reduction could be from the 3-coloring.) (Sketch of the) Solution
Let G be the given instance. Create H by adding two extra vertices u and v to
G. The two vertices are connected by an edge and they are also connected to all
vertices originally in G. G has a 3-coloring if and only if H has a 5-coloring.

(b) [6 pts] Cycle packing means that we use a set of vertex-disjoint cycles C1, C2, · · ·
to cover all vertices in V (Every vertex is covered exactly once). Suppose that we
impose the additional condition that each cycle must be of length at least L. The
decision problem here is whether there is a cycle packing satisfying the additional
constrain that each used cycle is of length at least L. Prove that this problem is
NP-complete. (Hint: Hamiltonian Cycle seems a good candidate).

(Sketch of the) Solution
Cycle packing is a special case of Hamiltonian cycle. We can set L to be |V |, the
number of vertices in the graph. The graph has a cycle packing satisfying the
length constrain if and only if it has a Hamiltonian cycle.

6

