
Algorithms Exam 1

Oct. 29 2014
kl 8:30 - 12:30
väg och vatten
salar

Ansvarig:
Chien-Chung Huang Tel. 031 772 1699 Rum 6455 EDIT

Points : 60
Grades: Chalmers 5:48, 4:36, 3:28

GU VG:48, G:28
PhD students G:36

Helping material : course textbook, notes

• Recommended: First look through all questions and make sure that you under-
stand them properly. In case of doubt, do not hesitate to ask.

• Answer all questions in the given space on the question paper (the
stapled sheets of paper you are looking at). The question paper will
be collected from you after the exam. Only the solutions written in
the space provided on the question paper will count for your points.

• Use extra sheets only for your own rough work and then write the final answers
on the question paper.

• Try to give the most efficient solution you can for each problem - your solution
will be graded on the basis of its correctness and efficiency – a faster algorithm
will get more credit than a slower one. In particular a brute force solution will
not get any credit.

• Answer concisely and to the point. (English if you can and Swedish if you must!)

• Code strictly forbidden! Motivated pseudocode or plain but clear English/Swedish
description is fine.

Lycka till!

12014 LP 1, DIT600 (GU) / TIN093 (CTH).

1

Problem 1 Stable Marriage [5] Suppose that we have a set of boys {Leonard, Raj,
Sheldon} and a set of girls {Amy, Bernadette, Penny}.

(a) [2 pts] Construct their preferences so that there is only one stable matching.
(Sketch of the) Solution
L : ABP
R : BPA
S : PAB

A : LRS
B : RSL
P : SLR

(b) [3 pts] Construct their preferences so that there are three stable matchings.
(Sketch of the) Solution
L : ABP
R : BPA
S : PAB

A : RSL
B : SLR
P : LRS

Problem 2 Graph [5] Given a graph G = (V,E), give a polynomial time algorithm
to decide whether the graph is bipartite or not. Remember that a bipartite graph
means that the set V of vertices can be separated into two parts U and W so that all
edges connect a vertex in U and a vertex in W . (Hint: What is so special about the
cycle in a bipartite graph?)

(Sketch of the) Solution
There is no odd-length cycle in a bipartite graph. There can be many ways of solving
the problem. For instance, use DFS or BFS to find out a cycle, and if it is of odd
length, report not, otherwise, remove it and continue. Report correct in the end.

Problem 3 Flow and Cut I [10] Let G = (V,E) be a directed simple graph with
capacity c : E → R≥0. Two special vertices s and t are the source and the destination.
In our lecture, we explain the capacity scaling max-flow algorithm in detail. The
following is called the “bit-scaling algorithm” of a very similar spirit. Suppose that
each capacity c(e) is represented as a K bit binary number. (We can always add some
zeros if necessary to make each capacity exactly K-bits.) Let us define a sequence
of problem P1, P2, · · ·, Pk, where Pk represents the problem with the same network
G = (V,E) and the truncated capacities ck on the edges e. That is, for each edge, its
capacity ck(e) is the number represented by the first k bits of c(e).
Let f∗k be the maximum flow in problem Pk, for all 1 ≤ k ≤ K. For simplicity, we also
define f∗0 is be the zero flow, i.e., f∗0 (e) = 0 for all e ∈ E. Also let c0(e) = 0 for all
e ∈ E.

(a) [2 pts] Argue that 2f∗k−1 is still a flow in the problem Pk.

2

(Sketch of the) Solution
Observe that ck(e) is either 2ck−1(e) or 2ck−1(e)+1. So on every edge e ∈ E,
2f∗k−1(e) ≤ 2ck−1(e) ≤ c(e). So the capacity constrain is not violated in problem
Pk. It is easy to see that the flow conservation for each vertex (6= s, t) is also
satisfied.

(b) [6 pts] How much bigger can the flow value of f∗k be compared to 2f∗k−1? (Hint:
Look at the min-cut in problem Pk−1)

(Sketch of the) Solution

Let C be the min-cut in problem Pk−1. The flow value of f∗k is bounded by∑
e=(u,v),u∈C,v 6∈C ck(e) (weak duality).

Observe that 2f∗k−1 has the property (1) for each e = (u, v) with u ∈ C and v 6∈ C,
ck(e) ≤ 2f∗k−1(e)+1, and (2) for each e = (u, v) with u 6∈ C and v ∈ C, 2f∗k−1(e) =
0, and (3) the flow value of 2f∗k−1 is computed as

∑
e=(u,v),u∈C,v 6∈C 2f∗(e) −∑

e=(u,v),u6∈C,v∈C 2f∗e .

These observations implies that the flow value of f∗k can only be m larger than
2f∗k−1.

(c) [2 pts] So we should have an idea of how to design the algorithm now. Find the
maximum flow f∗1 in P1. Double it (i.e., multiply the flow on each edge by the
factor of 2) and treat it as the initial flow in P2. Find the next maximum flow f∗2
in P2 by augmentation. Continue in this manner for the following problems P3,
· · ·, PK . As PK is just the same as the original problem. The maximum flow f∗K
in PK is the solution to the original problem. So what is the running time of this
algorithm? You should justify your answer.

(Sketch of the) Solution
As f∗k can be only m larger than 2f∗k−1. There can be only m augmentations for
each problem Pk. Each augmentation takes O(m) time. So for each problem Pk,
we need O(m2) time. In total we need O(Km2) time.

Problem 4 Flow and Cut II [15] Let G = (V,E) be a directed graph with capacity
c : E → R≥0. Two special vertices s and t are the source and the destination. Fur-
thermore, suppose that we also allow s to have incoming edges and t to have outgoing
edges.

(a) [4 pts] Recall that in our lecture, we said that to find a maximum flow, it suffices
to repeatedly find an augmenting path from s to t in the residual graph Gf , where
f is the current flow. Suppose that we now find a directed path p from s to t
in Gf . Explain why is that f augmented along the path p is still a flow. Your
answer should cover all cases. (You should explain what is ”augmentation” and
how it is done, as well as why it still results in a flow).

(Sketch of the) Solution
We need to define a residual graph and what is meant by finding a path in the
residual graph, how the flow is updated in augmentation, and argue that after
the augmentation, the flow conservation law and the capacity constraints are
satisfied. (For the last part, one has to take into account that some edges in the

3

residual graph are forward arcs and some are backward arcs and there are four
cases to take care of).

(b) [4 pts] Suppose that for some edges e, the capacity c(e) can be infinite. Then
clearly the flow values can be unbounded (then, there is no solution to the max-
imum flow problem), depending on the network. Nonetheless, can we check
whether there is a maximum flow of bounded value? You are allowed to use
an algorithm that takes exponential time.

(Sketch of the) Solution
As the flow value is always bounded by the cut size (weak duality), we just have
to check whether there exists an s-t cut whose size is finite. This can be done by
considering all s-t cuts.

(c) [7 pts] We are given a set J of jobs and a machine. Each job j ∈ J has a release
time rj and a deadline dj and it takes exactly one hour to process the job. We
assume that release times and deadlines are always the beginnings of the hours,
e.g. 7AM, 5PM and so on.

Suppose that the machine has different processing capacities c at different hours
of the day, for instance c(3AM−4AM) = 8 means that during the period of 3AM
to 4 AM, the machine can process up to 8 jobs.

We have to solve the decision question: is there a feasible schedule to process all
jobs in J? Give a polynomial time algorithm and argue that your algorithm is
correct. (Hint: Maximum flow is the apparent way to go.)

(Sketch of the) Solution

Create 24 nodes, each of which represents an hour and each of which has an arc
towards the sink and the capacity of that arc is the capacity of the machine during
that hour.

Next create a node for each job. The source s has an outgoing edge of capacity
one toward each such job node. Finally, draw an arc from a job node to an hour
node with capacity 1 if that hour is within the release time and the deadline of
that job.

Find the maximum flow in this network and if the flow value is |J |, the number
of jobs, then return yes, otherwise, no. The correctness of the algorithm follows
from the fact that each feasible schedule corresponds to a feasible flow in the
constructed network.

Problem 5 Longest Dominance Sequence [13] Suppose that we are given a table
T . Each cell (i, j) has a positive integer T (i, j) in it. The cell (i, j) dominates (i′, j′)
if the following three conditions hold. (1) i′ < i, (2) j′ < j, and (3) T (i′, j′) < T (i, j).
(Clearly, the dominance relationship is transitive). The goal here is to find the longest
dominance sequence (i1, j1)... (it, jt), i.e., (ia, ja) dominates (ia−1, ja−1), for 2 ≤ a ≤ t.
This problem can be solved by dynamic programming as follows. Let us build another
table D. In the cell D(i, j) is recorded the longest dominance sequence ending at cell
(i, j).

4

(a) [1 pts] What is D(1, j) and D(i, 1) for all i and j?

(Sketch of the) Solution
One.

(b) [6 pts] Suppose that right now we want to fill in the entry D(i, j), assuming that
i > 1 and j > 1. What other cells in D will be required for filling D(i, j)? You
should explain in details how the value of D(i, j) is going to be decided using
those other cells that are already filled in (i.e. you should give the recurrence
formula).

(Sketch of the) Solution

D(i, j) = 1 + max(i′,j′),where i′<i,j′<j,T (i′,j′)<T (i,j)D(i′, j′).

(c) [2 pts] The above recurrence should suggest a strategy to you: what is the order
you are going to enter all the entries in D?

(Sketch of the) Solution

One possibility is the row by row. Namely
(1, 1), · · · , (1, n), (2, 1), · · · , (2, n), · · · (n, 1), · · · , (m,n).

(d) [2 pts] After we fill in all the entries in D, how do we find the solution to the
original problem?

(Sketch of the) Solution
Just check all entries D(i, j).

(d) [2 pts] What is the running time of your algorithm? Is it really polynomial?
(Sketch of the) Solution

We need O(m2n2) time and it is really polynomial.

Problem 6 NP-Completeness [12] For the following two problems, you should
argue that (1) they belong to the class of NP, and then (2) prove that they are NP-
complete by reduction.
The following is the partition problem. Given a set of numbers A = {a1, a2, · · · , an},
can we divide them into the subsets whose sums are equal? That is, can we divide A
into two groups A1 and A2 so that

∑
ai∈A1

ai =
∑

ai∈A2
ai?

partition problem is known to be NP-complete.

(a) [6 pts] Show that k-partition is also NP-complete. k-partition asks whether
we can divide A into k groups A1, A2, · · ·, Ak so that

∑
ai∈Au

ai =
∑

ai∈Av
a)i for

any 1 ≤ u ≤ v ≤ k. Prove that k-partition is NP-complete. (Hint: Obviously,
the reduction should be from partition.)

(Sketch of the) Solution

The problem is in NP because the certifier can just check any possible partition
of A into k parts and see if the sums in all these parts are equal.

Let A = {a1, a2, · · · , an} be the partition instance. We create a new instance
A′ = {a1, a2, · · · , an, an+1, an+2, · · · an+(k−2)}. Let an+1 = an+2 = · · · an+(k−2) =

5

∑n

i=1
ai

2 . It can be verified that A can be partitioned into two parts if and only if
A′ can be partitioned into k parts, where each of {an+1, · · · an+(k−2)} is a single
part by itself.

(b) [6 pts] The following is the unrelated machine scheduling problem. We are given
a set J of jobs and a set M of machines. Each job i ∈ J has a processing time
pij on machine j ∈ M . Jobs are to be processed on the machines. The load of
a machine i ∈ M is the sum of the processing times of the subset J ′ ⊆ J of jobs
assigned to it, i.e.,

∑
j∈J ′ pij . The decision version of this problem asks whether

there is an assignment so that the load of every machine is bounded by a certain
value t.

Show that the problem is NP-complete. (Hint: The reduction could be from the
previous problem.)

(Sketch of the) Solution

The problem is in NP because the certifier can just check any possible assignment
of the jobs on the machines and see if the total load on each machine is bounded
by t.

Let A = {a1, a2, · · · , an} be a k-partition instance. Create a set M of k machines
first. For each number ak, create a job jk with pik = ak for all i ∈ M . Further-

more, let t =

∑n

i=1
ai

k . The instance A can be equally partitioned into k parts if
and only if there is an assignment where each machine has exactly the load of t.

6

