Solution of the Exam

October 31, 2013

Problem 1

1. For ease of presentation, we give an algorithm for the case of G being a forest.

Given any leaf node u in G, we choose its only adjacent node v as part of the vertex cover. Then update G by removing all the incident edges of v from G. Repeat the process continuously until there is no edge left.
2. The correctness of the algorithm follows from the observation: given the edge (u, v) and u is the leaf node, any vertex cover should contain either u or v or both. The minimum vertex cover cannot contain both (since removing u from the set gives a smaller vertex cover, a contradiction); if the minimum vertex cover contains u instead of v, we can as well replace u by v while still having a vertex cover of the same cardinality.

Problem 2

1. Create a vertex for each club/residnet/party and also a source s and a sink t. s has an arc of capacity 1 to all clubs. Each club C_{i} has an arc of capacity 1 to a resident R_{j} if the latter belongs to the former. Each resident R_{j} has an arc of capacity 1 to his belonging party P_{k}. Each party P_{k} has an arc of capacity u_{k} to the sink t.
2. The town council is possible to organize if and only if there is a flow of value c (the number of clubs).
If there is a town council, we create a flow of value c by sending 1 unit of flow s to C_{i}, from C_{i} to R_{j} if the latter represents the former, and send this unit of flow from R_{j} to his belonging party P_{k} and then to the sink.
Conversely, if there is a flow of value c, find a path from s to t along which there is positive flow. By construction, such a path takes the form of $s-C_{i}-R_{j}-P_{k}-t$. Let R_{j} represent C_{i} and decrease the flow by 1 unit along this path. Now repeat until the flow is down to 0 .

Problem 3

1. Split the array into two sub-arrays $A[1 \cdots n / 2]$ and $A[n / 2+1 \cdots n / 2]$. The recursion should report the number of inversions within each sub-array and sort it.
2. The combination step should count the number of inversions "across" the two subarrays. Use two indices i and j, both initialized to be 1 . Use the counter $i n v$ to record the total number of inversions. Initially, inv is the sum of the inversions within the two sub-arrays. For convenience, call the two returned (and sorted) sub-arrays B and C. We also create another linked list \bar{A}, initialized to be empty; \bar{A} will be the sorted array.
The algorithm works as follows: if $B[i]>4 C[j]$, then increase $i n v$ by the number of remaining elements in B (that is, $n / 2-(i-1)$). Next if $B[i] \leq C[j]$, then append $B[i]$ to the end of \bar{A} and increase i by 1 ; on the other hand, if $B[i]>C[j]$, append $C[j]$ to the end of \bar{A} and increase j by 1 . If i or j is greater than $n / 2$, then just append the rest of the other array to the end of \bar{A} and then stop. Otherwise, continue this process.
3. Let the running time be $T(n)$. Then $T(n) \leq 2 T(n / 2)+c n$, where c is some constant. Each "layer" in the recursion takes $O(n)$ time. As there are $O(\log n)$ layers, we need $O(n \log n)$ time in total.

Problem 4

1. The certificate is any subset of edges $E^{\prime} \subseteq E$. The certifying algorithm just checks the following: (1) $\sum_{e \in E^{\prime}} c(e) \leq C,(2) E^{\prime}$ is a spanning tree, and (3) each vertex v has $\left|E^{\prime} \cap \delta(v)\right| \leq b(v)$. If all three are yes, return yes, otherwise, return no.
2. Let $G=(V, E)$ be the given graph in an instance of the Hamiltonian path problem. In the reduction, use the same graph, let $c(e)=1$ for all edges $e \in E, b(v)=2$ for all vertcies $v \in V$, and set the cost upper bound $C=|V|-1$. We claim that the graph G has a Hamiltonian path if and only if there is a spanning tree of cost at most C satisfying the degree constraints b.

If P is a Hamiltonian path, P has cost $|V|-1$, every vertex has at most 2 incident eges in P, and all vertices are connected in P (hence P is spanning).
In the other direction, if there is a spanning tree T of cost at most C, since all edges e have cost $c(e)=1$, there are exatly $|V|-1$ edges in T and every vertex has degree at most 2 in T. Therefore, T is a path visiting all vertices, i.e., a Hamiltonian path.

Problem 5

1. Start from an arbitrary vertex and follow edges that have not been used before. Continue this process. As the given graph is connected, every vertex has degree at
least 2 , eventually we will visit a vertex that has been visited before. This gives a cycle.
2. Remove C from G. Let the remaining connected subgraphs be G_{1}, \cdots, G_{k}. Each G_{i} still has even degree and has less edges than G, so the induction hypothesis states that it has an Eulerian tour P_{i}.

Observe that C must have some vertex in G_{i} (maybe more than one). Choose a unique one and call it v_{i}. We can "stitch" the Eulerians tours P_{i} and C together to form an Eulerian path P for the entire graph G.

Tranverse the edges in C and add them into P one by one. If we visit some vertex v_{i} in G_{i}, then add the path p_{i} (starting and ending at v_{i}) into P. The final outcome is an Eulerian path.
3. We solve by recursion. First find a cycle C in G as done in the first part (this can be obviously done in linear time). Let G_{1}, \cdots, G_{k} be the remaining connected sub-graphs. Find the Eulerian path P_{i} in G_{i} using recursion. Then construct the Eulerian path P using C and the Eulerian paths P_{i} as shown in the second part.
To see this is polynomial time, observe that each time a recursion happens, we remove a cycle from the original graph. As there can be $O(|E|)$ cycles in G, we conclude that the running time is polynomial. ${ }^{1}$

Problem 6

1. Choose all vertices with odd indices.
2. $w(1)$.
3. $O P T(i)=\max \{O P T(i-2)+w(i), O P T(i-1)\}$. There are only two possibilities: i is or is not in $O P T(i)$. In the former case, $i-1$ cannot be part of $O P T(i)$. Then $O P T(i-2)$ gives the best solution among all vertices from 1 to $i-2$. In the latter case, $O P T(i-1)$ gives the best solution among all vertices from 1 to $i-1$.
4. $O P T(n)$.
5. $O(n)$.
[^0]
[^0]: ${ }^{1}$ In fact, one can get a linear time algorithm if one is more careful.

