
Algorithms Exam 1

Oct 20 2009
kl 1400 – 1800
“vag och vatten”
salar

Ansvarig:
Devdatt Dubhashi Tel. 772 1062 (Willard Rafnsson) Rum 6479 EDIT

Points: 60
Passing criteria: Chalmers 5:48, 4:36, 3:24

GU VG:48, G:28
Doktorander G:36

Helping material: Textbook, notes, course page stuff.

• Recommended: First look through all questions and make sure that you under-
stand them properly. In case of doubt, do not hesitate to ask.

• Answer all questions in the given space on the question paper (the
stapled sheets of paper you are looking at). The question paper will
be collected from you after the exam. Only the solutions written in
the space provided on the question paper will count for your points.

• Use extra sheets only for your own rough work and then write the final answers
on the question paper.

• Answer concisely and to the point. (English if you can and Swedish if you must!)

• Code strictly forbidden! Motivated pseudocode or plain but clear English/Swedish
description is fine.

Lycka till! Good Luck!

12009 LP 1, INN200 (GU) / TIN090 (CTH).

1



Problem 1 Sorting Revisited [10]

(a) Give a linear time algorithm to sort an array that is known to consist only of 0s
and 1s.

(b) Suppose it is known that an array A[1 . . . n] contains at most k distinct values
(which are not known). Describe a data structure and algoritahm to sort the
array in time O(nk). For what range of values of k is this an asymptotically
better algorithm than Mergesort?

(c) For the same situation as in (b), describe a data structure and algorithm to sort
in time O(n log k). For what range of values of k is this an asymptotically bettre
algorithm than Mergesort?

2



(d) Show that the algorithm in (c) is asymptotically best possible.

Problem 2 Greedy Tape Storage [10] Let P1, P2, . . . , Pn be n programs to be
stored on a tape. Program Pi requires si kilobytes of storage; the tape has enough
capacity to store all programs. We also know how often each program is used: a
fraction πi of requests concern program Pi (thus

∑
i πi = 1). Information is recorded

along the tape at constant density and the speed of the tape drive is also constant.
After a program is loaded, the tape is rewound to the beginning. So, if the programs
are stored in the order i1, i2, . . . , in, the time needed to load program Pj when it is
requested is

∑
1≤k≤j sik and the average time to load a program (computed over all

program requests) is thus:

T = c
∑

1≤j≤n

πij ∑
1≤k≤j

sik

 ,
where the constant c depends on the recording density and the speed of the drive. We
want to minimise T using a greedy algorithm. Prove, or give a counter-example for
each of the following: to minimize T , we can select the programs

(a) in order of non-decreasing si,

(b) in order of non-increasing πi,

3



(c) in order of non-increasing πi
si

.

(For a counter-example, you have to specify program sizes and frequencies and show
that the selected order does not give the optimum.)

Problem 3 Buying Stocks [10] You’re consulting for a small computation-intensive
investment company and they have the following type of problem that they want to
solve over and over every day. They’re doing a simulation in which they look at n
consecutive days of a given stock, at some point in the past. Let’s number the days
1, 2, . . . , n. For each day i, they have a price p(i) per share for the stock on that day.
Suppose that during this time period, they want to buy 1000 shares on some day and
sell all those shares on some later date. They want to know: when should they have
bought and when should they have sold to make as much money as possible?
For example, suppose n = 3, p(1) = 9, p(2) = 1, p(3) = 5. Then you should “buy
on day 2 and sell on day 3”. This would make a profit of SEK 4 on each share, the
maximum in that period. (This was
This was Solved Exercise 2 in [KT, Chapter 5] where a Divide-and-Conquer strategy was
used to develop a O(n log n) algorithm. Here your goal is to design a faster algorithm.
Let OPT (i) denote the optimal solution considering transactions are possible only on
days 1 · · · i.

(a) What is the value we are trying to compute in terms of this notation?

(b) What is the value OPT (1)?

(c) Write a recurrence for OPT (i) based on what is done on day i.

4



(d) Implement the recurrence efficiently in pseudo-code.

(e) What is the time and space complexity of your algorithm?

(f) Can your algorithm also tell you which day to buy and sell and if so, how?

Problem 4 Closest Points [10] Given n points in the plane, develop a Divide-
and-Conquer algorithm to count the number of pairs of points such that the distance
between the points is at most twice the distance between the closest pair of points.
Explain the conquer step clearly and briefly justify it. (Hint: First compute the
minimum distance between any two points.)

5



Problem 5 Bilkoperative Picnic [10] Majorna’s Bilkoperative (car pool society)
is organising a picnic. There are n families with family i having fi members, and there
are m cars, with carj having capacity to seat cj people. Also family i has a list Li of
cars which they are willing to to travel in (for reasons of safety). Not all members of a
family need be in the same car. Give an efficient algorithm to determine if everyone can
be packed into the available cars or whether they will have to rent more cars. Analyse
the running time of your algorithm.

Problem 6 Cybercommunities [10] An interesting problem in internet algorithmics
is to find a collection of densely connected web sites i.e. set of web sites which have a
lot of hyperlinks between each other. Such collections are called cybercommunities - for
example, the set of sites discussing Harry Potter films is one such cybercommnunity.
In graph theory terms, the concept is captured by the notion of a clique: a clique is an
undirected graph G = (V,E) is a subset U ⊆ V such that for any two vertices u, v ∈ U ,
(u, v) ∈ E. Consider the optimization problem of finding the size of the largest clique
in a given graph.

(a) Formulate a decision problem corresponding to whether or not a graph has a
clique of a certain size. Show that the decision problem and the optimization
problem are polynomial-time equivalent i.e. if one can be solved in polynomial
time, so can the other.

6



(b) Show that the decision problem is in NP.

(c) Show that the decision problem is NP-complete by giving a reduction from the
Independent Set problem (which is know to be NP-complete).

7


