Chalmers | GOTEBORGS UNIVERSITET 2013-12-17

David Sands, D&IT

Functional Programming TDA 452/451, DIT 142/141

2013-12-17 08.30 — 12.30 M/maskin

David Sands, 0737 207663

e There are 4 Questions with maximum 8 + 9 + 15 + 16 = 48 points; a total of 22 points
definitely guarantees a pass.

e Results: latest within 21 days.

e The examiner will visit the examination rooms at approximately 09.30 - 09.45 and one
more time during mid morning.

e Permitted materials:

Dictionary

e Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

Full points are given to solutions which are short, elegant, and correct. Fewer points
may be given to solutions which are unnecessarily complicated or unstructured.

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

There are only two difficulties with Haskell programming:
predicting space behaviour, monads, and off-by-one errors.

Question 1. In this question we assume that there exits a function rainfall :: Int -> Float
which gives the weekly rainfall (in mm) in Gothenburg starting from a particular year,
where weeks are numbered in sequence 1, 2,...

(a) (5 points) Define two versions of the function maxRainfall :: Int -> Float
where maxRainfall n gives the maximum rainfall in any week in the range [1. .n].
Your definition may assume that n > 0:

(i) Give a definition using foldr, simple enumeration lists (e.g., [1..n]), the
function max, and no other recursive functions, list comprehensions, or prelude
functions.

(ii) Give a definition using a tail-recursive helper-function, addition, and the func-
tion max, but without using any other recursive functions, list comprehensions,
enumerations (like [1..n]) or prelude functions.

(b) (3 points) The function maxWeeks :: Int -> [Int] is supposed to behave as
follows: given a week number n (assumed to be greater than zero) it returns the
list of all week numbers in the range 1,...,n which had the maximal rainfall for that
period. So for example if the largest rainfall in the first 9 weeks was 29.4, then
maxWeeks 9 should return all the week numbers in the range 1 to 9 which had
rainfall of 29.4.

Define maxWeeks using only list comprehensions, the list [1..n], the prelude func-
tion maximum, ==, and no other recursive functions or prelude functions. You may
not use the functions defined in part (a).

Question 2. (a) (5 points) Give the most general types of the following five functions:

faxyz=xz&&yz

fb m = Just (m+1)

fc (x:y:xs) | x >y = 999

fd (x:xs) (y:ys) = x == ys

fd [] ys = ys == []
fe x y = do
z <- X

return $ z:y

(b) (2 points) Rewrite the following definition without do notation:
ff x y = do
¢ <- readFile x
d <- readFile c
putStr (¢ ++ "\n" ++ d)

(¢) (2 points) Rewrite the following using do notation:

fg a tb tc td
= case lookup a tb of
Nothing -> Nothing
Just b -> case lookup b tc of
Nothing -> Nothing
Just ¢ >
case lookup ¢ td of
Nothing -> Nothing
Just 4 -> Just [b,c,d]

Question 3. A bag, or multiset, is a collection of elements like a set, but where an element can occur
more than once. The following data type will be used to represent a bag:

data Bag a = EmptyBag | Node a Int (Bag a) (Bag a)

The idea is that any Bag containing a node of the form Node elem count left right
represents a bag containing count copies of the element elem. The following data type
invariants should be maintained (and thus may be assumed) for any such node in any
Bag built in your implementation:

e all the elements in left are strictly smaller than elem,
e all the elements in right are strictly larger than elem, and

e the count count is greater than or equal to zero.
These invariants mean that a bag is a variant of a so-called binary search tree.

(a) (1 points) In what situation would it be useful to have the following definition:

emptyBag :: Bag a
emptyBag = EmptyBag

(b) (2 points) Define the following function, by recursion on the Bag argument, to
count how many times a given element appears in a bag:
bcount :: Ord a => a -> Bag a -> Int

(c) (3 points) Define a function which converts a bag to a list, with the correct number
of copies of each element. Your function should produce a sorted list whenever the

bag satisfies the data type invariant (note: you should not use the sort function to
ensure this).

bagToList :: Bag a -> [al
(d) (4 points) Define the data type invariant
prop_Bag :: Ord a => Bag a -> Bool
which checks whether the given bag satisfies the data type invariant.
(e) (5 points) Define
bchange :: Ord a => a -> Int -> Bag a -> Maybe (Bag a)
which changes the number of occurrences of a given element by the given amount.

If there are not sufficiently many elements in the bag to complete the operation
then the function returns Nothing.

For example, if bagToList b is [9,9,10] then the following is True:

map (fmap bagToList) [bchange 11 1 b, bchange 9 (-2) b, bchange 9 (-4) bl
== [Just [9,9,10,11], Just [10], Nothing]

Question 4. [This question has four parts, (a)-(d) on two printed pages] The Towers of Hanoi is
an ancient puzzle, consisting of a collection of rings of different sizes, and three posts
mounted on a base. At the beginning all the rings are on the left-most post as shown,
and the goal is to move them all to the rightmost post, by moving one ring at a time
from one post to another. But, at no time may a larger ring be placed on top of a
smaller one!

Hanoi 3 4 [[1,2,3,41,[1,[1]

Hanoi 3 4 [[213/4]1[111[]]

e

Hanoi 3 4 [[3,4]1, [1]1, [2]]

Se

In this question we will model games with any Hanoi 3 4 [[3,4], [1, [1,211
number of discs (the game in the picure above @) -
has 8) and any number of pegs (the game in the

picture has 3), using the following data type: Hanoi 3 4 [[4], (3], [1,2]]
oS
type Pegs = Int =
type NumDiscs = Int Hanoi 3 4 [[1,4],[3], [2]]
type Disc = Int @/e 2

data Hanoi = Hanoi Pegs NumDiscs [[Disc]]

deriving (Eq,Show)

The image to the right above shows a sequence of moves for a game with 4 discs and
three “pegs” and the corresponding Haskell representations of each board.

(a)

(3 points) Define a function prop_wellFormedHanoi :: Hanoi -> Bool such that
prop_wellFormedHanoi (Hanoi p d ps) checks that the Hanoi board is well-
formed: it contains exactly the discs [1..d], p pegs, and on any peg there is
never a larger disc on top of a smaller one.

(1 points) Define a function
emptyHanoi :: Pegs -> NumDiscs -> Hanoi
which given a number of discs and number of pegs, creates an empty Hanoi of

those dimensions. Note that this Hanoi will intentionally not be well-formed if the
number of discs is nonzero.

(6 points) Define two functions

addDisc :: Disc -> Pegs -> Hanoi -> Hanoi

removeDisc :: Pegs -> Hanoi -> Maybe (Disc, Hanoi)

addDisc given a disc, a peg number, and a Hanoi, creates a Hanoi by adding the
disc to the peg of the Hanoi. If the peg is outside the range of the Hanoi then
your definition should leave the Hanoi unchanged. removeDisc p h attempts to
return the pair of the top disc from peg p of h, together with the resulting Hanoi.
It returns Nothing if this is not possible.

Neither of these functions should change the NumDiscs dimension of the Hanoi (so
in practice one would expect that only the Hanoi result of addDisc, or the Hanoi
argument to removeDisc, to be well-formed — but you do not need to check this).

5

(d) (6 points) Give the definitions necessary to enable quickCheck to run on properties
of well-formed Hanois. You may assume that Hanoi boards have between 2 and 10
discs and between 3 and 5 pegs.

Hint: one strategy for generating a well-formed Hanoi is to first pick a random
number of discs d and a random number of pegs p; then starting with a row of p
empty pegs, recursively add the elements from the list of discs [1..d], one at a
time, to randomly chosen pegs in the range [1..p]. Finally fix each peg so that
the discs are stacked in the right order.

|re) aresall = s|ie}
[[ell <- [e] = sire}
SX ++ SX = SX alaym SX = SX 8942
JIs11 Adwe apAoepnpid LJoue = [8pAo
[e] <-[e] :: 91940
(x yeadal) u ayel = x u ayeoldal
[e] <—e<-1y:: areal|dal
SX: X=SX alaym SX = X yeadal
[e] <-e:: 1eadal
(x 1) J aresan : X = X} oledl
[e]<-e<-(e<-¥):: arelall
SX(Xzy)}Ipoy =(sx: X) Z } |p|o}
z= z}|p|o}
e<-[gl<-e<-(e<-Qq<-¥):: Iplo}
(sx z4pjoy) v: = Amx X) Z § Ip|0}
0 z}plo}
q<-[e]<-0<- sA q<-®): iplo}
(T-wiisx=uiji(sx:7)
x= 0ii (%)
e<— W< [e] = (ii)
0 ((+T) 1su09) Jpjol = yibus|
Wi <-[e] = [NGIE]]
asfed = C: unu
ani| = 0 qnu
joog <- [e] = Inu

sxuul X= (sx:

0 = [x]
sx= (sx:
[e] <-[e]:
sxise|= (sx:
X = [x]

X = (: x)peay
e<-[e]: 1SE| ‘peay

} dew " 120U090 =} deN1ROUO0D
[a] <- [e] <= ([q] <~ ®e) :: de\yesu0d

ssx] (++) JpjoJ = SSX 1B2U0D

[e] <- [[e]] :: yreauod

[xd‘sx —>x|x] =sxd oy
[e] <- [e] <- (joog <-®) :: 1ayy

sxsA(:) Ipjo} = SA ++ SX

[e] <= [e] <= [e] @ (++)

[SX —>X|x}] =sx} dew

[a] <- [e] <= (g <—®) :: dew

S1s|| Uo suonouny ——

(dpus) (dis) 4 = dyAunoun
(0<-(@'e))<-(0<-q<-®): Aunoun

(AX)} = AxypAund

d<-(g<-e<-(0<-(q‘e): Ana
(e‘q) = (qe) dems

(e‘q) <- (g'e) dems

A = (A'X) pus

g<-(g'e): pus

X = (Ax) 15}

e<-(qe) 18}

sired uo suonouny ——

S| sagAeN1RD

[e] <- e mg\nm_\,: sagAe1eo
ewisnc = (: ©) agAeNO11S]|
BuiyroN = 0 esgfewolnsi

e aghe <- [e] agAeNo11s]|

(e 1snr) 1s1mo agAew
= BuyloN 1smo] aghew

[e] <— e aghen :: 1sI7018gAew
e = (eisnr)isnrwouy

e <— e aghen :: Isncwouy
Isnesl - ou = BuiyioNs!

joog <— & aghAe| :: BuiyioNs!
asfeq = BuiyioN 1snesi

anil = (e1snr) 1snesi

j00g <— & aghAe| :: 1snesl

eisnr | BulyloN = e agAe|\ erep

agAe\ uo suonouny ——

anl] = as[ed 10u

ased = ani] 1ou

joog <- |0og :: 10U

X = X || asred

ani| = | emuL

as|ed = ~ ®% as[eq

X = X 9% anil

loog (D ‘Cs%)

anil | asfed = joog elep

s|oog uo suonauny ——

X)= X ¢}

(<~ ¥ = ($)

xAy= Axydy
d<-B<-(q<-(0<-Q<-¥):

(x B) § <— X\ = 6}

(O<- 9 =)

X= XISuod

e<-Q<-e:l JSU0d

X = X pl

B<—® p!
suonouNy Uo suonouny ——

(TX §) unal
Tw —> TX op = TW AW
JW<—Te W <— (1 <—Te) <= (W peuol) :: AN

() wnal

SX aouanbas op = SX _aduanbas
() w <—[e w] <= w peuoy :: ~aduanbas

(sx : X) uinjal

b —> sx

d->xop =b d suoow asaym

0 uinjal) suoow Jpjoy = douanbas
[e] w <—[e w] <= w peuo :: 8dusanbas

suonouny olpeuoOW ——

UaA3 " Jou = ppo
0== wal, u= U uana
j00g <- ® <= (e [esba)) :: ppo ‘usna

suonouNy eaBWNU ——

q<- e <=(qesbay) Jooy ‘Bujied
q<- e <= (qesbay) :: puno. ‘ayesunsy
alaym e orl4jeay <= (e [euonorld ‘e [eay) Sse|d
e<- € uej ‘sod ‘uIs
e<— B ubs ‘Boj ‘dxe
alaym 2] mc;mo_n_ <= (e [euonoeid) sse
e < [euoney :: [euoneywo.l}
B<- B<— ® I)
alaym e _m:oaomi <= (e wnN) ssepP
J9bal) <—- ® 196321uj01
B<- B<— ® pow ‘AIp
B<— B<— ®B I wal ‘1onb
alaym e |elbalu] <= (e wnu3 ‘e |eay) Sse|d
[euoey <- e [euoneyo}
alaym e _mmm <= (e pIO ‘e WNN) ssed
e <— JELE) IS Jabaujwou)
e<— B wnubis ‘sqe
e<- ® arebau
e<- B<- ® () ') '+
alaym e E:z <= (e moys ‘e b3g) ssep
B<- B<- B I ulw ‘xew
joog <- B<- B I (<) ‘(=<) ‘(=>) ‘(»)
alaym e plO <= (e b3) ssep
jopog <- eB<- ®B (=) ‘(==)

alaym eb3 ssep

Buns <- e I moys
2laym B MOUS SSejo

sasse|d adA} plepuels ——
{-
peuo’jouo) feyd ereq aghep ereq
1sI7"eleq apn|aid :Sanpowl ||9xSeH prepuels
3] WoJy suonouny pajoalas 4o 1s| e SI SIyL

-}

‘Jalawere
d azis ay) uo puadap rey; siorelauab 10N1SU0D ——
' U39 <— (B Us9 <—1W|) :: pazis

‘pBual usAIb ayy Jo 1SI| e SalelauaD) ——
[e] uao <— e UBD <-1U| :: JOI01DdA

‘y1bus| wopuel Jo 1SI| e Sajelauas) ——
[e] usn <—e uao :: jJOIs]|

‘'sanjen UaAIb ay) Jo BUO SaJRIBUDD) ——
e U99 <- [e] :: sjuawald

‘uonnguisip wopuel ——
paybiam yum siorelauab Jo 1si| Woly Sasooy) ——
e ua9 <- [(e uao ‘)] :: Aouanbaly

siojelauab uanib ay Jo auo sasn Ajwopuey ——
B U9 <- [e uao)] :: Jjoauo

‘abuel anIsnouUl ——
USAIB 8} Ul JUBWSJS WOopUERI B S3)elauds) ——
B U39 <- (B ‘) <= e wopuey :: 3sooyd

MoayDainb Aq pasn ‘Alenigly ssejo ul ——
adA1 e Jo sanjea 1oy} Jojelauab ayl ——
B U9 <= e Aleniqly :: Arenigre

23yDM2INO 1S9 Wol) ——
suonouNy |Njasn awos Jo sainyeubis ——

Jeyp <— 1l i ayo
| <- Jey) :: plo

£ == g ubigo Ll ——
reyd <-wj :: wbigo i

== 8. ujo1ubip ——
| <—Jey) ::ujo1 nbip

Z, == Z. 1amo70] ——
V. ==k, Jaddno) ——

rey) <- rey) :: lamoo; ‘1addnol
[1eyD] =bBums adAy

leyd uo suonaunj ——

sxxuasur: A asp sx:A:x uay A=>Xx Ji

= (sx: A) X pasul

[x] = 1l X Uasul

[e] <-[e] <—e<=(e plO) : uasul

0 1asul Ipjoy = 1i0s
[e] <-[e] <= (e p1O) :: 110S

A asianal JOXI81ds!, X 8S1anal = A X JOXIUNSSI
j0oog <- [e] <- [e] <= b3 :: JOx1ynssI
SA sx JOXUalids! 87

A==x =(sA: K)(sx: X) JOX1§21ds!
esed =[] T JOoXyaIds!
enul =] Joxya.ds!

|joog <- [e] <- [e] <=e b3 :: JOxyaids!

sx (x ba) ueds = (sz‘sA) alaym
sz ba Agdnoib : (sA: X) =(sx: x)ba Agdnoib
1] = 1l ~ Agdnoib
[[e]] <- [e] <- (joog <- e <- ®) :: Agdnoib

==) Agdnoib = dnoib
[[e]l <-[e] <=e b3z :: dnoiB

(sx (d * 10u) Jay ‘sx d sa)y)
= sx d uonied
(fe]l'Te]) <- [e] <- (joog <—®) :: uoned

Mocllselr'Tll== —-
[lo‘s'v]‘[e‘2'T]] @sodsuen —-

[[el] < [[e]] = asodsuel
[v'0'e'0'2'0'T] == [¥'e'2'T] 0 9siadsiopul ——
[e] <-[e]l <-e 1 asiadsiaul
[sk L,wspe, X ‘sX => x| x] = SA sx 108sI9)ul
[e] <-[e] <-[e] <=e b3 :: 109sI91UI
(sx \\ SA) ++ sx = sA sx uolun
[e] <-[e]l <-[e] <=e b3 :: uolun
(21319p dily) IpIO} = (W
[e] <- [e] <- [e] <=eb3 = (W
sxAowPp : X as@ sx uay A==x J
= (sx: X) A a1919p
0 = 1 A a1019p
[e] <-[e] <-e<=® b3 :: EIETET)
[A=/x‘sx—>A|A] gnu : X
= (sx: x)gnu
0 = I gnu
[e] <-[e]l<=e b3 :: qnu
(00)(sa: gse: e)<- (sa‘'se)~ (a'e)\) pjo}
= dizun
([a]'Te]) <- [(a'e)] = dizun
1 = 77T yimdiz
sq se z yunmdiz : gez =
(sq: a)(se: ®)zynmdz
[ol<-[ql<-[e] <~ (o<-q<-e) = Unmdiz
() yymdiz. = diz
[(a®)] <- [a] <- [e] diz

SX X UlW [p|o} = (SX : X) wnuwiuiw

511 Adwie swinwiiuiwrspnpld LJoue = [wnwiuiw

SX X Xew [pjoj = (sX : X) wnwixew
Js11 Adwe winwiixewrspnpid JJous = [wnwixew
e <—[e] <= (e pJO) :: Wnwiuiw ‘wnwixew

T () P10} = 1onpoud
0 (+) 1o} = wns
®<-[e] <= (e wnN):: 3onpoid ‘wns

sAx Aoy dnyoo| = asimiayio |
Aisnt = x==Aoy |

(sAx : (A'x)) Aoy dnxjoo)

BuiyioN = 1 A3y dnyo0|

g agheN <- [(g'e)] <-e<=(eb3):: dmjoo|
x=)e = X wa|31ou

(x ==) Aue = X Wae

joog <- [e] <—e <= (e b3):: waJlo0u ‘W
d dew " pue = d e

ddew 1o = d Aue

joog <- [e] <- (joog <—®) :: e ‘Aue
asfed (|[) Jpioy = 1o

aniL (%9%9) Jp|o} = pue

|joog <- [joog] :: 1o ‘pue

0 («:) diiy) Ipjoy_ = aslanal
[e] <-[e] = asIanal

.edad edaq ede, == —

[sedas, edaq,’ ede,] spjomun ——
Ledaosu\edagu\ede, == —-—
[.edas,‘ edaq, ede,] saujun ——
Buis <— [Buis] :: spiomun ‘sauljun

[edas, edag,’ ede] == —-
.edaos u\edaq ede, spiom ——
[edas, edaq, ' ede,] == ——
Luedasu\edaqu\ede, saul ——
[Buis] <- Buis 1 spiom ‘saul

(se d ajiymdoup ‘se d ajiymasel) = se d ueds
(fe] ‘Te]) <- [e] <- (joog <- ®) :: ueds

SX = 9SIMIBLIO |

sx d aiymdoip = xd|
(sx: x)@sx d ajiymdoip
0 = 0 dajumdoip
0 = asImIaylo |
sx d ajiymaxer : X = xd|

(sx: x)dajnymaie:
a = 0 dajymexer
E?EAL_oom_A-mv””m__cigo_u,m__ciwv_ﬁ

(sx u doup ‘sx u axe1) = SX U yds
(fel'fe]) <-[e] <= = vids

sx (T-u) doip = (sx: T)udoip
0 = 1 doup
sXx =0=>u]| sxudolp

Sx (T-u) ayey : X = (sx: Xx)uaye
1} = 0_"om@

1] =0=>u| u axel

[e] <-[e] <=1y :: doup ‘axel

