Programming 1O

at+t+b=Db+a?

Think of programming language.
Imagine a program which contains

() + g()

where all you know is that f and g both
return integers

Can you safely swap f and g?

g() + ()

Or can they be computed in parallel?

When is a function a function?

In most programming languages, no,
because functions are not really functions in

the mathematical sense.
e.g., Python: input() + input()

Haskell is a pure functional language.
Functions really are functions.

So how can Haskell be pure and still interact
with the outside world?

Let's run a Haskell program..

cv C:\WINDOWS\system32\cmd.exe - Draw2.exe X

Microsoft Windows XP [Uersion 5.1.26001] a
(GC> Copyright 1985-2001 Microsoft Corporation

C:\Documents and Settings\Administrator>cd Desktop

C:\Documents and Settings\Administrator\Desktop>Draw2.exe

M Function Graph

BEE

30*sin(0. 1fx)+5*cos X

* What's the type of that result???

A Much Simpler Example

Prelude> writeFile "foo" "baz"

Prelude>

» Writes baz to the file called foo.
* No result displayed—wonder why not?

What's "foo™?

Huh? | h
Prelude> :t "foo" thought it

"foo" :: [Char] ——— e B Sl
Prelude> :i String s J

-- type constructor
type String = [Char] j\[Atype synonym}

« A String is a list of characters

* A character (Char) corresponds more-or-
less to a key on the keyboard.

b 3)

 Examples: 'a’, '1’,

What's writeFile?

Prelude> :i writeFile
writeFile :: FilePath -> String -> 10 ()
A

7

Just a g INSTRUCTIONS to
String the operating system
. towrite the file)

* \When GHCi finds an expression of 1O
type, it obeys the instructions instead of
printing them.

An Analogy

* |nstructions:

Take this card, go to a Bankomat.
Put in the card.
Enter this code, select 500kr.

Take the money and the card.

Which would
you rather
have?

Instructions with Results

* |nstructions can have results:

Prelude> :i readFile
readFile :: FilePath -> |O String

Instructions for
computing a String

* readFile "foo” is not a String, and no String
can be extracted from it { Just as no 500:- can be }

extracted from a bank card

« But it can be used as part of more
complex instructions, to compute a String

Combining Instructions

* We combine instructions using do:

copyFile fromA toB =
do contents <- readFile fromA
writeFile toB contents }

» readFile fromA is an 1O String
» But contents is just a String

. writeFile toB-(readFile fromA)

a N\

'First follow
readFile
Instructions,
call the result
contents,
then follow
writeFile

bh

Instructions
NG /

Example: Displaying Instruction
Results

display io = Follow the
do result <- io < instructions to get a

print result | ™ value, then printit

Main> display (readFile "foo")
"baz"
Main> display (writeFile "foo" "bar")

()

Repeating Instructions

doTwice 10 = e _ _ ~
do a <- io <~ Aninstruction to
b <- io Lcompute the given
return (a,b) result Y
dont io =
return ()

Main> display (doTwice (print "hello"))

"Ee::o" Writing instructions and obeying
N them are two different things!

(0,0)
Main> display (dont (print "hello"))

()

Why Distinguish Instructions?

* Functions always give the same result for
the same arguments

* Instructions can behave differently on
different occasions

» Confusing them (as in most programming
languages) is a major source of bugs

— This concept a major breakthrough in
programming languages in the 1990s

— How would you write doTwice in C?

Monads = Instructions

* What is the type of doTwice?

Main> :1 doTwice

doTwice :: Monad a => a b -> a (b,b)
/ fWhatever kind of\
a4 Even the kind of result argument
instructions can vary! produces, we get
Different kinds of __apair of them
instructions, depending on | |0 means operating

____Whoobeysthem. / gystem.

Monads = Instructions

Instructions to the }

* A new built-in type% Ororating Systom
— 10 a
I . is the "em uple”
« Standard functions: 4{0 s the ‘empty i ge }
— putStr :: String -> 10 () contents

—readFile :: FilePath -> 10 String
— writeFile :: FilePath -> String -=> 10 ()

Quiz

* Define the following function:

‘sortFile .: FilePath -> FilePath -> IO ()

e “sortFile file1 file2” reads the lines of file1,
sorts them, and writes the result to file2

* You may use the following standard
functions:

(sort :: Ord a => [a] -> [a]
lines :: String -> [String]
unlines :: [String] -> String

An example

¢ Suppose:

astCommand :: [IO a] -> IO a
astCommand ios = head (reverse i0)

* What happens:

lastCommand [print "apa”, print "bepa”, print "cepa”]

Sequence

» Useful functions:
sequence :: [lO a]->10 [a]
sequence_:: [IO a]-> 10 ()

« Example:
printTable :: [String] -> 1O ()
printTable xs = 7?

ghci> printTable ["apa”,’bepa”,"cepa’]
1. apa
2: bepa
3. cepa

printTable

printTable :: [String] -> I0 ()

printTable xs = sequence_

'putStrLn (show i ++ ”:” ++ x)
(x,1) <- zip xs [1..]

printTable

Or equivalently:

printTable :: [String] -> I0 ()
printTable xs =
sequence_ (map putStrLn table)
where table = [(show i ++ ”:” ++ X)
| (x,1) <- zip xs [1..]]

Reading

 About I/O:

— Chapter 18, Thompson
— Chapter 9, Hutton

 About QuickCheck: read the manual linked
from the course web page.

— There are also several research papers about
QuickCheck, and advanced tutorial articles.

