Modelling & Datatypes

Modelling a Card Game

» Every card has a suit ‘ .

data Suit = Spades | Hearts | Diamonds | Clubs

* Model by a new type:

The new The values
type of this type

Printing Values

Main> Spades

ERROR - Cannot find "show" function for:
*** Expression : Spades
**%x Of type : Suit Needed to print

values

i

Main> :i show
show :: Show a => a -> String -- class member

* Fix

10/26/2009

Modelling Data

» A big part of designing software is
modelling the data in an appropriate way

* Numbers are not good for this!

* We model the data by defining new types

Investigating the new type

Main> :i Suit
-- type constr‘u
data Suit —
The new values
-- constructors

-- constructors:
Spades :: Suit

Hearts :: Suit Types and
Diamonds :: Suit constructors
Clubs :: Suit start with a

capital letter
Main> :i Spades
Spades :: Suit -- data constructor

data Suit = Spades | Hearts | Diamonds | Clubs
deriving Show

Main> Spades
Spades

The Colours of Cards

« Each suit has a colour — red or black
* Model colours by a type

data Colour = Black | Red
deriving Show

« Define functions by pattern matching

colour :: Suit -> Colour Main> colour Hearts
colour Spades Black Red
colour Hearts Red

colour Diamonds
colour Clubs

Red [—
Black One equation per value

The Ranks of Cards

» Cards have ranks: 2..10, J, Q, K, A

* Model by a new type

data Rank = Numeric Integer | Jack | Queen | King | Ace

deriving Show
| Numeric ranks contain
an Integer

Main> :i Numeric

Numeric :: Integer -> Rank -- data constructor
Main> Numeric 3
Numeric 3

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool ‘
rankBeats Ace = False N
= \L Nothing beats an Ace }

Matches
anything at all

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False
rankBeats Ace _ = True
rankBeats _ King = False
rankBeats King _ = True
rankBeats _ Queen = False
rankBeats Queen _ = True
rankBeats _ Jack = False
rankBeats Jack _ = True

10/26/2009

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool ‘

rankBeats _ Ace = False An Ace beat hi |
rankBeats Ace _ = True % MAEE [EEES EpTIITE) CEE }

Used only if the first
equation does not match.

Rank Beats Rank

rankBeats :: Rank -> Rank -> Bool
rankBeats _ Ace = False

rankBeats Ace _ = True

rankBeats _ King = False

rankBeats King _ = True

rankBeats _ Queen = False

rankBeats Queen _ = True

rankBeats _ Jack = False

rankBeats Jack _ = True

rankBeats (Numeric m) (Numeric n) =m > n

Matches Numeric 7, Names the number
for example in the rank

Examples

Main> rankBeats Jack (Numeric 7)
True

Main> rankBeats (Numeric 10) Queen
False

Further reading exercise: possible to make
a much simpler definition by getting
Haskell to derive the ordering relations <,
<= etc. between cards.

— Find out more about "deriving Ord"...

QuickCheck Generators

 Test data is chosen by a test data
generator

» Writing generators we leave for the future

Modelling a Card

* A Card has both a Rank and a Suit

data Card = Card Rank Suit
deriving Show

» Define functions to inspect both

rank :: Card -> Rank
rank (Card r s) = r

suit :: Card -> Suit
suit (Card r s) = s

10/26/2009

A Property

« Either a beats b or b beats a

prop_rankBeats a b = rankBeats a b || rankBeats b a

Main> quickCheck prop_rankBeats

ERROR - Cannot infer instance

*** |nstance : Arbitrary Rank

*** Expression : quickCheck prop_rankBeats

QuickCheck doesn’t know how

to choose an arbitrary Rank!

Testing the Property

prop_rankBeats a b = rankBeats a b || rankBeats b a

Main> quickCheck prop_rankBeats
Falsifiable, after 9 tests:
King

King Provided they're not equal }

prop_rankBeats a b = a/=b ==> rankBeats a b || rankBeats b a

data Rank = Numeric Integer | Jack | Queen | King | Ace

= o 2
deriving (Show, Eq) :L Define == for ranks]—

A Useful Abbreviation

» The previous type and function definitions
can be written in an equivalent
abbreviated form:

data Card = Card {rank :: Rank, suit :: Suit}
deriving Show

When does one card beat another?

* When both cards have the same suit, and
the rank is higher can be witen
more simply...

cardBeats :: Card

-> Card -> Bool
cardBeats c d

| otherwise

= False

data Suit = Spades | Hearts | Diamonds | Clubs
deriving (Show, Eq)

| suit ¢ == suit d = rankBeats (rafk c) (rank d)

Modelling a Hand of Cards

+ A hand may contain any number of cards
from zero up!

data Hand = Cards Card ... Card <
deriving Show

We can't use

* The solution is... recursion!

When can a hand beat a card?

+ An empty hand beats nothing

« A non-empty hand can beat a card if the
first card can, or the rest of the hand can!

handBeats :: Hand -> Card -> Bool
handBeats Empty card = False
handBeats (Add c h) card =

cardBeats c card || handBeats h card

« Arecursive function!

10/26/2009

When does one card beat another?

* When both cards have the same suit, and
the rank is higher

cardBeats :: Card -> Card -> Bool
cardBeats ¢ d = suit c == suit d

&& rankBeats (rank c) (rank d)

Modelling a Hand of Cards

* A hand may contain any number of cards
from zero up!

— A hand may be empty

— It may consist of a first card and the rest
» The rest is another hand of cards!

data Hand = Empty | Add Card Hand
deriving Show

Solve the problem of
Arecursive type!

modelling a hand with
one fewer cards!

Trickier Example:

Choose a card to play

« Given
— Card to beat
— The hand

» Beat the card if possible!

Strategy

« If the hand is only one card, play it
« |f there is a choice,
— Select the best card from the rest of the hand
— Choose between it and the first card
* Principles
— Follow suit if possible
— Play lowest winning card if possible
— Play lowest losing card otherwise

Properties of chooseCard

» Complicated code with great potential for

errors!

» Possible properties:

— chooseCard returns a card from the hand ("no
cards up the sleeve”)

— chooseCard follows suit if possible ("no
cheating”)

— chooseCard always wins if possible

What Did We Learn?

Modelling the problem using datatypes
with components

Using recursive datatypes to model things
of varying size

Using recursive functions to manipulate
recursive datatypes

Writing properties of more complex
algorithms

10/26/2009

The Code

-- chooseCard beat hand chooses a smallest card from hand to
-- play and beat is the card to be beaten
chooseCard :: Card -> Hand -> Hand
chooseCard beat (Add c Empty) = c
chooseCard beat (Add c rest)
| suit c==suit beat && suit c’/= suit beat = c
| suit c/=suit beat && suit c’==suit beat
| rankBeats (rank c) (rank c’)
| otherwise
where ¢’ = chooseCard beat rest

wonon
(s}
-

Testing chooseCard

prop_chooseCardWinslfPossible ¢ h =
h/=Empty ==>
handBeats h ¢

cardBeats (chooseCard c h) ¢

Main> quickCheck prop_chooseCardWinslfPossible

Falsifiable, after 3 tests:

Card{rank=Numeric 8,suit=Diamonds}

Add Card{rank=Numeric 4,suit=Diamonds} (Add
Card{rank=Numeric 10,suit=Spades} Empty)

What went wrong?

Reminder: Modelling a Hand

* A Hand is either:
— An empty hand
— Formed by adding a card to a smaller hand

data Hand = Empty | Add Card Hand
deriving Show

« Discarding the first card:

discard :: Hand -> Hand
discard (Add c h) =h

10/26/2009

Lists: recap

* CanrepresentO, 1, 2, ... things
H =11, [3], ["apa”,’katt”,"val”,”"hund”]
Lists They all have the same type
—[1,3,True,”apa”] is not allowed
* The order matters

-- how they work

-1[1,2,3] 1=[3,1,2]
* Syntax
-5:(6:(3:[]))==5:6:3:[==1[5,6,3]
—"apa” ==[a,/p’/a]
Can we define Lists as a ,
Lists
datatype?
data List = Empty | Add ?? List Eta Lista = Empty | Add a (List a)

A type parameter
 Our attempt at a lhome made” list is

either: * Add 12 (Add 3 Empty) :: List Int

— An empty list « Add "apa” (Add "bepa” Empty) :: List String

— Formed by adding an element to a smaller list « Haskell’s built-in lists can be thought of as
» What to put on the place of the ?? a syntactic shorthand for this datatype

Lists More on Types

Functions can have "general” types:
— polymorphism
—reverse :: [a] ->[a]
Empty :: List Integer — () a > (8] > [_
Empty :: List Bool * Sometimes, these typgs can be restricted
. . — Ord a => ... for comparisons (<, <=, >, >=, ...)
Empty :: List String _Eqa=> ... for equality (==, /=)
— Num a => ... for numeric operations (+, -, *, ...)

data List a = Empty | Add a (List a)

10/26/2009

Do’s and Don’ts Do’s and Don’ts

guards and comparison
boolean

with a boolean
results constant

Do’s and Don’ts Writing Code

» Beautiful code
—readable
- —not overly complicated
comparison .
with a boolean — Nno repetitions
constant e »
—no “junk” left
* For
—you
— other people

