Lecture 9: Critical Sections revisited,
and Reasoning about Programs

K.V.S. Prasad
Dept of Computer Science

Chalmers University
Monday 6 and 13 Oct 2014



Plan for today

Chap 2, 3 recap and complete
Chap 4 intro to logic
If time permits, some Linda programming.

REMINDER: I’'m away Thu 16 Oct. Maybe guest.
REMINDER: Class rep meeting Thu 9 Oct.



Recap — state diagrams

e (Discrete) computation = states + transitions

— Both sequential and concurrent
e Can two frogs move at the same time?

— We use labelled or unlabelled transitions

* According to what we are modelling

e Chess games are recorded by transitions alone (moves)
— States used occasionally for illustration or as checks

— In message passing, the (labelled) transitions
* Are what we see of a (sub)system
* So they matter more than the states



How to program multiple processes

* Concurrent vs. sequential
— Concurrent has more states due to interleaving

* But a concurrent sort program should sort
— No matter which interleaving

— So cut out unwanted interleavings
* through synchronisation (waits)



What is interleaved?
Atomic statements

* The thing that happens without interruption
— Can be implemented as high priority

 We must say what the atomic statements are
— In the book, assignments and boolean conditions

— How to implement these as atomic?



Correctness - safety

* A safety property must always hold
— In every state of every computation

* =“nothing bad ever happens”

— Typically, partial correctness
* Program is correct if it terminates

* E.g., “loop until head, toss”
— sure to produce a toss if it terminates
— But not sure it will terminate
» Will do so with increasing probability the longer we go on

* How about “loop until sorted, shuffle deck”?
— Sure to produce sorted deck if it terminates
— Needs much longer expected run to terminate



Correctness - Liveness

* Aliveness property must eventually hold
— Every computation has a state where it holds

* =a good thing happens eventually

— Termination

— Progress = get from one step to the next
— Non-starvation of individual process



Safety and Liveness are duals

* Let P be a safety property
— Then not P is a liveness property

* Let P be a liveness property
— Then not P is a safety property



(Weak) Fairness assumption

* |f at any state in the scenario, a statement is
continuously enabled, that statement will
eventually appear in the scenario.

* So an unfair version of coin tossing cannot
guarantee we will eventually see a head.

 We usually assume fairness



What is the critical section problem?

e Specification
— Both p and g cannot be in their CS at once (mutex)

— If p and g both wish to enter their CS, one must
succeed eventually (no deadlock)

— If p tries to enter its CS, it will succeed eventually
(no starvation)

* GIVEN THAT

— A process in its CS will leave eventually (progress)
— Progress in non-CS optional



Different kinds of requirement

e Safety:
— Nothing bad ever happens on any path

— Example: mutex
* In no state are p and g in CS at the same time

* If state diagram is being generated incrementally, we see more
clearly that this says ”in every path, mutex”

e Liveness

— A good thing happens eventually on every path

— Example: no starvation
* If p tries to enter its CS, it will succeed eventually

— Often bound up with fairness
* We can see a path that starves, but see it is unfair



Deadlock?

* With higher level of process
— Processes can have a blocked state
— If all processes are blocked, deadlock
— So require: no path leads to such a state

* With independent machines (always running)

— Can have livelock
e Everyone runs but no one can enter critical section

— So require: no path leads to such a situation



Language, logic and machines

Evolution

— Language fits life — why?

— What is language?

What is logic?

— Special language

What are machines?

— Why does logic work with them?

What kind of logic?



Logic Review

* How to check that our programs are correct?
— Testing
e Can show the presence of errors, but never absence
— Unless we test every path, usually impractical
— How do you show math theorems?
e For *every* triangle, ... (wow!)
* For *every* run

— Nothing bad ever happens (safety)
— Something good eventually happens (liveness)



Propositional logic

Assignment — atomic props mappedto T or F
— Extended to interpretation of formulae (B.1)

Satisfiable —f is true in some interpretation
Valid - f is true in all interpretations
Logically equal

— same value for all interpretations

— P -> g is equivalent to (not p) or g

Material implication

— p->qistrueif pis false



Proof methods

e State diagram
— Large scale: "model checking”
— A logical formula is true of a set of states

e Deductive proofs
— Including inductive proofs

— Mixture of English and formulae
e Like most mathematics
— But can be formalised

 Theorem provers
* Proof checkers



Algorithm 3.1

* We can prove mutex by checking all the states
 How to prove absence of deadlock?

— Do we have to look at all scenarios?
* Would be even worse; all paths through the state diagram

— Fortunately, only paths from states (p2,92,i)
— Then we can argue from the text of the program
* Don’t need state diagram

e Starvation?

— Sadly, a loop in the state diagram can starve a process



Algorithms 3.2 -3.4

* 3.2 : No mutex
— easy to see scenario that leads to this
— just do both processes in step

e 3.3 : Deadlocks
— Again, by doing both processes in step

e 3.4 :Both can starve

— Again, by doing both processes in step



Dekker’s algorithm (3.10)

Each process in turn has the right to insist on
entering its critical section

Perhaps surprisingly, this does the trick!
Can prove by state diagram
— but will do by logic

Dekker, Peterson, etc.
— These algorithms are now only nice examples

Actual mutex etc. achieved by hardware
— instructions such as test-and-set, compare-and-swap.



Complex atomic hardware instructions

 Show correctness of 3.11 and 3.12
Test-and-set(common, local) is
local := common
common :=1

Exchange(a, b) is

local temp
temp :=a
a:==b

b :=temp



Atomic Propositions (true in a state)

wantp is true in a state
— iff (boolean) var wantp has value true

p4 is true iff the program counter is at p4
* p4is the command about to be executed
* Then pj is false for all j=/=4

turn=2 is true iff integer var turn has value 2
not (p4 and g4) in alg 4.1, slide 4.1

 Should be true in all states to ensure mutex



Mutex for Alg 4.1

* |nvariant Invl: (p3 or p4 or p5) -> wantp
— Base: p1, so antecedent is false, so Inv1 holds.
— Step: Process g changes neither wantp nor Invl.
Neither pl nor p3 nor p4 change Inv1.
p2 makes both p3 and wantp true.
p5 makes antecedent false, so keeps Inv1.

So by induction, Inv1 is always true.



Mutex for Alg 4.1 (contd.)

* |nvariant Inv2: wantp -> (p3 or p4 or p5)
— Base: wantp is initialised to false, so Inv2 holds.
— Step: Process q changes neither wantp nor Invl.
Neither pl nor p3 nor p4 change Invl.
p2 makes both p3 and wantp true.

p5 makes antecedent false, so keeps Inv1.
So by induction, Inv2 is always true.
Inv2 is the converse of Inv1.

Combining the two, we have
Inv3: wantp <-> (p3 or p4 or p5) and
wantq <-> (g3 or g4 or g5)



Mutex for Alg 4.1 (concluded)

* |nvariant Inv4: not (p4 and g4)
— Base: p4 and g4 is false at the start.
— Step: Only p3 or g3 can change Inv4.

p3 is “await (not wantq)”. But at q4, wantg
is true by Inv3, so p3 cannot execute at g4.

Similarly for g3.

So we have mutex for Alg 4.1



Proof of Dekker’s Algorithm (outline)

nvariant Inv2: (turn = 1) or (turn = 2)
nvariant Inv3: wantp <-> p3..5 or p8..10

nvariant Inv4: wantq <->g3..5 or g8..10

Mutex follows as for Algorithm 4.1
— NB: “turn” alone won’t prove it.
Will show neither p nor g starves

— Effectively shows absence of livelock



Liveness via Progress

Invariants can prove safety properties
— Something good is always true
— Something bad is always false

But invariants cannot state liveness
— Something good happens eventually

Progress Ato B

— if we are in state A, we will progress to state B.
Weak fairness assumed
— torule out trivial starvation because process never scheduled.

— A scenario is weakly fair if
* Bis continually enabled at state Ain scenario ->
B will eventually appear in the scenario



Box and Diamond

A request is eventually granted
— For all t. req(t) -> exists t’. (t’ >=t) and grant(t’)
— New operators indicate time relationship implicitly
* box (req ->diam grant)
If “successor state” is reflexive,
— box A -> A (if it holds indefinitely, it holds now)
— A ->diam A (if it holds now, it holds eventually)

If “successor state” is transitive,
— box A -> box box A

* if not transitive, A might hold in the next state, but not beyond
— diam diam A -> diam A

See Wikipedia page on LTL



Formalising Fairness

* Absolute Fairness: every process should be
executed infinitely often:

— for all i: GF ex_i
— But a process might not be enabled.

e Strong Fairness: a process that is infinitely often
enabled executes infinitely often when enabled:
— foralli: (GFen_i))=> (GF(en_i™ex_i)) :

 Weak Fairness: a process that is ultimately always
enabled should execute infinitely often:
— foralli: (FGen_i))=>(GF ex_i)



Progress in (non-)critical section

 The following are notes re Ben-Ari’s proof, but |
prefer the liveness proof in the Utwente notes.

* Progress in critical section
— box (p8 -> diam p9)

— |t is always true that if we are at p8, we will eventually
progress to p9

* Non-progress in non-critical section
— diam (box p1)

— It is possible that we will stay at p1 indefinitely



Progress through control statements

 For”pl:if Athens” to progress to s, need
— pl and box A
—pland A is not enough

e does not guarantee A holds by the time p1 is scheduled

* So in Dekker’s algorithm
— p4 and box (turn = 2) -> diam p5

— But turn = 2 is not true forever!
It doesn’t have to be. Only as long as p4.



Lemma 4.11

box wantp and box (turn=1) ->
diam box (not wantq)

— If itis p’s turn, and it wants to enter its CS,
will eventually defer

Note that at g1, wantq is always false
— Both at init and on looping

g will progress through g2..g5 and wait at g6
— Inv4: wantqg <->qg3..50r g8..10

* Implies box (not wantq) at g

Lemma follows



Progress to CS in Dekker’s algorithm

e Suppose p2 and box (turn=2)
— If p3 and not wantq then diam p8

— p2 and box (turn=2 and wantq) ->
diam box p6 <-> diam box (not wantp)

— p6 and box (turn=2 and not wantp) -> diam g9
— p2 and box (turn=2) -> diam box (p6 and turn=1)
— Lemma 4.11 now yields diam p8



