Distributed Programming with Erlang
A crash course

Cons T Ahs

cahs@cisco.com/cons@tail-f.com

@lisztspace

c c taﬂ.f Tail-fis now stlrer]n
I s o 9 partof Cisco. €CISCO.

mailto:cahs@cisco.com
mailto:cons@tail-f.com

Cons T Ahs

» Technical Leader at Cisco since two weeks ago
» Developing network configuration and management tools in Erlang
» Previously

» Senior developer/architect, Keeper of The Code at Klarna (probably
Sweden's largest collection of Erlang developers)

» Consultant; online poker, low level networking, medical imaging, graphics,
finance, musical notation, compilers, real time video decoding, teaching..

» Lecturer at Uppsala University, research & teaching; foundations,
algorithms, functions, relations, objects, compilers, pragmatics, theory,
theorem proving, formal program correctness..

Erlang - The Language

» Conceived at Ericsson
» Buzzword compliancy

» Functional - no side effects
Robust - built for fault tolerance and high availability
Runs in a virtual machine (VM) called beam
Extremely lightweight processes - from 309 words
Easy to distribute among cores, VMs and machines
No shared memory between processes

Processes communicate asynchronously through mail boxes

OTP - Open Telecom Platform

vV VvV VvV VvV Vv VvV VY

A Functional Language

Dynamically typed functional language

No side effects; variables are bound once and the value can not be changed
) trying to reassign a variable will crash the program

Every expression computes a value

Pattern matching provides parallel binding and compact programs (mixed
blessing - beware!)

Looks very much like Prolog
» A function is determined by both name and arity
» functions are divided in clauses
» function bodies are sequences of expressions

Includes the power of higher order functions and closures

vV Vv VvV Vv

Basic Workings

The file example.erl holds module example
The exported functions constitutes the interface of the module
Access exported functions with module: fun (<args>)

Erlang is started with er1 presenting you with a basic REPL (read-eval-print
loop)

» enter expressions and see value

Use ¢/ 1 to compile a file

Use 1/1 to load a compiled file [lowercase ‘L]

Factorial

-module (fact) .
-module (fact) .

—export ([factorial/1]).
—export ([factorial/1]). =P (1 ial/17)

, factorial (N) -> factorial(N, 1).
factorial (N) when N > 0 ->

N*factorial (N-1);

, factorial (N, F) when N > 0 ->
factorial (0) -> 1.

factorial (N-1, F*N);
factorial (0, F) -> F.

Stored in file fact.erl - an erlang module corresponds to a single file
Only exported functions (factorial/1) are available externally
Clauses are tested in order

Clauses are separated with a semicolon

Last clause ends with a period

Variables starts with a uppercase character

vV VvV VvV Vv VvV VvV VY

The expression after when is called a guard - limited set of operators allowed, not
any arbitrary function call

» Why is the version on the right better!

Append lists

-module (append) .
-export ([append/2]) .

append([], L) -> L;
append ([X|Xs], L) —-> [X]append(Xs, L)].

» List syntax
» [] for empty list
» [Head | Tail] pattern for head and tail of list
» [1, 2, 3] list of three element
» Pattern matching can be used in clauses
» Runtime error if there is no clause matching the call
» What's the complexity of this function?

» The builtin ++ operator does the same thing, so L1 ++ L2 appends the lists.

Usage

2> fact:factorial (10).

3628800

3> fact:factorial (100).
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000

7> append:append([1,2,3],[a,b,c]).
[11213Ialblc]
8>

» Function call uses both module and function name
» Erlang has bignums, i.e., arbitrarily large integers

» Lists with mixed types are allowed

» Erlang is not a typed language

» Type errors not caught at compile time

Tuples

-module (tuples) .

—export ([build/2, first/1l, second/1l]).
build (X, Y) -> {X, Y}.

first ({X, 1)y —> X.

second({ , Y}) -> Y.

» You can group N (N>0) things in a tuple
» Pattern matching can be done on tuples as well as lists
» _is an anonymous variable, i.e., a placeholder for an ignored value

» This extends to any variable starting with an underscore, e.g, _Foo

Conditional computation

» Pattern matching together with clauses is one way of doing conditional
computation.

» The traditional way in a functional language is to supply a built in construct
» C>EL; E2
» C is an arbitrary expression that evaluates to true or false
» [f C evaluates to true, E1 is evaluated and the value returned
» [f C evaluates to false, E2 is evaluated and the value returned
» Why is this described with the term “construct” instead of “function”?

» Some languages got this extremely right from the start, Erlang did not..

Conditional - case

case lists:member (3, L) of
true -> ... ;
false —>

end

case foo (X, Y, Z) of
ok -=> ... ;

[] -> ... 3
{U, vV} -> ...U0..V
end

» Evaluate expression and match different results

» Cases are separated with semicolon

» Last case clause does not end with semicolon (or period)

» An end marks the end of the case clauses

» The result of the expression can be any type, which is reflected in the case clauses

» Variables can be bound in the patterns

Conditional - if

1f
integer (X) -> ... ;
tuple (X) -> ... ;
N >0 ->
true —->
end

» This is not a traditional function if!
» One can not write arbitrary expressions in the conditional, only guards

» Erlang’s 1 f is generally considered to be broken and you’ll actually very seldom
see it used in real programs.

» case and/or pattern matching is used instead

» A guard is an expression consisting only of operators and built in functions

» A construct to make computation efficient

Compute length of list

-module (ex1) .

—-export ([rlen/l1
, tlen/1

1.

lnary recursive definition
1) -> 07
| L]) -> 1 + rlen(L).

I_II_IQ,

o O

$% Taill recursive definition
tlen(L) ->
tlen(L, 0O).

o\©
o\°

Tail recursive help function
n(ll, N) -> Ny
n([| L], N) -> tlen(L, N+1).

Data representation

» Data is built from numbers, atoms, tuples and lists

» 11, 42, 4711, 3.141692657

» foo, cisco, tail f, last name, false

» {foo, 12}

» {ray, {vec, 0.0, 1.0, 1.2}, {vec, 1, 1, 1}}
» [foo, bar, baz]

» [{object, 12}, wall, {true, 42}]

» Strings are just lists of characters (!)
» There is some support for abstraction in the form of records

» Also, opaque data such as pids, binaries, refs

Quirk: No Strings(!)

9> append:append("no ", "strings").
"no strings"

10> [97, 98, 99].

"abc"

11>

» The normal string notation is just syntactic sugar for a list of character codes
» Lists of integers that (seem to) represent characters are printed as strings

» All list operations can be used on strings

Records

-record (person, {name, age=0, length}).
mk person (Name) -> fprerson{name=Name}.

mk person (Name, Age) ->
fprerson{name=Name, age=Age}.

get_name(#person{name=Name}) —> Name.
get age (Person) -> Personf#person.age.
change age (Person, Age) ->

Person#person{age=Age}.

» Syntactic sugar for tuples with first component being the name of the record
» A somewhat abstract representation - changes in representation can be hidden
» Record syntax can be used in pattern matching

» Records were added to the language as an afterthought

Insert into ordered tree

-module (ex?2) .

-export ([cinsert/2]).

-record(tree, {info, left=empty, right=empty}).

cinsert (E, empty) -> #tree{info = E};
cinsert (E, T = #tree{info = E}) -> T;
cinsert(E, T = #tree{info = I}) when E < I ->
TH#tree{left = cinsert (E, TH#tree.left) };
cinsert(E, T = #tree{info = I}) when E > I ->
T#tree{right = cinsert(E, T#tree.right) }.

Abstract insert

-module (ex3) .
—export ([empty tree/0, insert/2]).

-record (tree, {info, left=empty, right=empty}).

empty tree () -> empty.

tree info(#tree{info = I}) -> I.

tree left (#tree{left = L}) -> L.

tree right (#tree{left = R}) -> R.

1s empty tree (empty) -> true;

1s empty tree(#tree{}) -> false.

mk node (E) -> #tree{info = E}.

mk tree(E, Left, Right) -> #tree{info = E, left = Left, right = Right}.

insert (E, Tree) ->
case 1s empty tree (Tree) of
true -> mk node (E);
false —->
I = tree info (Tree),
if E == -> Tree;
E< I —>
mk tree (I, insert(E, tree left(Tree)), tree right (Tree));
Lrue ->
mk tree(I, tree left(Tree), insert(E, tree right (Tree)))
end

end.

Similar syntax, different meaning

Are these all the same?

1s empty tree (empty) -> true;

is empty tree(#tree{}) -> false.

1s empty tree (empty) -> true;

1s empty tree() -> false.

1s empty tree(Tree) -> Tree == empty.

1s empty tree(Tree) -> Tree = empty.

No.

The types are different
empty | #tree -> true | false
any () —-> true | false
any () -> true | false

empty —> empty

The last two shows the difference between binding

and matching

Binding and matching

fool (N) ->
X = N,
X = 1.

foo2 (N) ->
X = N,
X == 1

» Variables are single assignment, so the first occurrence of a variable will bind it
» In subsequent occurrences, the bound value is used and can not be changed

» The = operator does bind and matching (of patterns) and can fail, i.e., generate a
runtime error (if the variable already has a value)

» The == operator does only matching (no binding) and returns true or false.

» What is the difference between fool/1 and foo2/1?

Local variables, scope

f(X, Y) —>
A = X+Y,
B = X-Y,
(A, B}.

M = case T of
{N} —-> true;
{N, } -> false
end,
{M, N}.

» The scope of a local variable binding is the rest of the clause

» This is true even if a variable is introduced by pattern matching in a case clause

Higher order functions

» Functions are first class citizens
» a variable can be bound to a function
» a function can be the result of a computation

» a function can be passed as an argument

-module (ex4) .

-export ([sorttuples/1
1) .

sorttuples (Tuples) ->
Num = fun({ , N}) -> N end,
Cmp = fun(T1l, T2) -> Num(Tl) < Num(TZ) end,
lists:sort (Cmp, Tuples).

Higher order functions

hof () ->
F = fun(X) -> X * X + 1 end,
L = lists:map(F, [1, 2, 3],

G = fun([]) -> nil;
(L_I1_]) —-> cons
end,
Y = G(L),
Y == nil.

» Syntax for anonymous functions is rather verbose
» Anonymous functions can have several clauses and use pattern matching
» A variable can be bound to a function
» Apply the function by using the variable instead of a function name
» Erlang got this right!
» What is the value of hof ()?

Scoping revisited

» The scope of a variable binding is the rest of the function clause
» An expression can only access variables bound before the expression

» It is not possible to write a local recursive function in the “ordinary” way

» It is possible to write a “local recursive” function using higher order functions

» Observe that G inside is “just” a function variable so it has to be passed to the

function
» This is a good exercise!

» Write factorial in this way.

Higher order functions

make adder (N) ->
fun(X) -> X + N end.

inclist (L) ->
lists:map (make adder(3), L).

whatlist (L) ->
lists:map (fun make adder/1, L).

what (L, V) ->
lists:map(fun(F) -> F(V) end, L).

» A function can be returned
» Notation for passing a named function as an argument

» Describe the functions inclist/1, whatlist/1 and what/2

Higher order functions

cumbersome (M) ->
MakeAdder = fun (N) ->
fun(X) -> X + N end
end,
(MakeAdder (3)) (M) .

» Making curried functions suitable for partial application is possible, but quickly
becomes a bit difficult to read.

» This is much easier in languages designed for this from the start.

Digression on closures

make adder (N) ->
fun(X) -> X + N end.

make what (M) ->
fun () -> fibonacci (M) end.

do 1t (D) ->
D().

» We have the cool feature of being able to return a closure, i.e., a function and
the environment it was defined in.

» What does make what/1 do?
» Returns a function of no (!) argument.
» It delays a computation!
» The body is evaluated only when we apply the result (of make what/1) to ().

» We can thus save and represent a computation and do it later.

Variables can hold anything

-module (sequences) . -module (numbers) .

—export ([plus/2, minus/2]) . —export ([plus/2, minus/2]).
plus (X, Y¥) -> X ++ Y. plus (X, YY) —-> X + Y.

minus (X, Y) -> X —-- Y. minus (X, Y) -> X - Y.

-module (eval) .
—-export ([eval/4]) .

eval (M, F, Al, A2) ->
M:F (A1, A2).

10> eval:eval (sequences, plus, [1,2,3]1, [a,b,c]).
[1,2,3,a,b,C]

11> eval:eval (numbers, plus, 4, 7).

11

12>

Variables can hold anything

» A variable can be bound to
» ordinary values and functions (no surprise)
» function names
» modules

» This means you can send a whole module M as an argument to another function
and the receiving function then calls known functions in M.

» Is this useful?

» Yes!

» It also means that given a module you can vary the actual function that is called
by passing the name in a variable.

» Is this useful?

» Possibly.

» Both variations lead to the possibility to map, e.g., user input directly to Erlang
modules and functions at runtime.

» Great way to make a really insecure system!

Variables can hold anything

» We had two modules which exported the same function names and arities
» They thus have the same interface!
» This concept exists in Erlang, but has the name behaviour

» It can be used in the same way as in, e.g., Java by providing several different
implementations of the same (abstract) interface

» A very commonly used behaviour is the gen_server (for generic server)

» You provide the details and a generic server takes care of the generic parts.

BIFs (Built In Functions)

» BIFs exist to provide functionality that can’t be done in pure Erlang

» interface with the real world for things like date, time and low level file
system access

» conversion between primitive types such as
» atom_to_list (convert an atom to a “string”)
» list_to_atom (convert a “string” to a (new) atom)
) etc

» There might also be BIFs for functions that can be implemented in Erlang, but a
BIF will do it faster.

» Read documentation!

Standard Libraries

» Erlang comes with a large set of standard libraries, e.g,
» list function
» dictionaries of varying representation
» ets, dets - term storage, either in memory or on disk
» mnesia - database built on top of dets
p etc

» Read the documentation

Concurrent and distributed programming

» With concurrent programming troubles form when you have a shared and
mutable state.

» Problem typically solved by using synchronisation with locks
» Complicated - you have to know when to lock
» Can lead to more problems - performance degradation
» Cooperative model - all parts of the program must agree
» Take away one and your on safe ground.

» Erlang takes away both!

No shared state, no mutable state

» Each process has a state of its own, or rather a sequence of states; possibly a new
state after receiving a message

» Each process has a private heap
» Each process has a message queue (the implementation handles these)
» Processes can not share state, even when they live in the same VM.

» All communication must be done with messages.

» messages are copied between processes

No shared state

» Why!

» Background (telecom switches) with a large number of small and short lived
processes

» When a process dies there is no risk reclaiming the whole process
» No other process can access the memory it used

» Nothing happens if you send a message to a dead pid

» The dead process can not reference the memory of another process

» Leads to robustness

Keeping state in a process

» Real world computations need state
» State is encoded in a process that reacts to messages
P init state
» wait for message
» compute new state from message and existing state

» loop
start() -> actor(init state()).

actor(State) ->
actor (process message(get msg(), State)).

» start the actor and send messages to it

Managing Processes

» Three basic primitives are used to handle processes
» Create process - returns pid (process id)
spawn (Function) or spawn (M, F, Args)
» Send a message - returns Msg
Pid ! Msg

» Receive a message from the message queue (the process will wait if there is no
message) - returns value of chosen expression

receive
Pattern: -> Expri;
Pattern; —-> Exprs;

end

Simple Message Passing

Note that you have to set up the actual protocol yourself
[f you want a reply, a sent message should include a return address

This goes for the reply as well - the original sender might want to know who sent
the reply

This might also apply to request identifiers so a more general request would
contain both a return address and an identifier

Given a simple and light weight protocol you can build a more complicated
protocol (with delivery guarantees) upon it, but not the other way round.

Selective receive

» Note that a receive will wait until it finds a message matching the pattern
» Messages might not be processed in the order they come

» This can be expensive since the message queue has to be searched

receilive

foo => f£(..)
end,
receilve

bar -> g(..)
end

Receiving messages

foobar () ->
FF = fun (Msg) ->

{message queue len, L} = process info(self(), message queue len),
i1o0:format ("Msg: ~p (~p)~n", [Msg, L])
end,

receive MO=foo -> F(MO) end,
receive Ml=bar -> F(M1l) end,
foobar () .

» A receive will wait until a message matching a specified pattern is in the
queue.

» Messages are processed in an order specified by the receives in the process

» Messages are thus not necessarily processed in the order they arrive
» The code

» reports queue length when acting on a message
» messages are processed in the sequence foo, bar, foo, bar,
» Note use of binding pattern in receive

» Why can’t we have the same variable in both receives

Example

start () -> server (0).

server (Count) ->
NewCount = receive
{report, Pid} ->
Pid ! Count,
Count;
~Msg -> Count + 1
end,
server (NewCount) .

32> P = spawn (fun simple:start/0).
<0.110.0>

33> P!foo.

foo

34> P!foo.

foo

35> P!foo.

foo

36> P! {report, self()}.
{report,<0.88.0>}

37> receive M -> M end.
3

Efficient computation through memoisation

» Consider a computationally intensive function
» Fibonacci, Ackermann, ..

» Instead of computing the value each time, one can remember the values and
serve them when a new request comes

» [f we know the value, return it
» Otherwise, compute it, remember it, return it
» It’s actually a cache!

» The cache (a mapping from argument(s) to value) is encoded in the state of a
process

Efficient computation through memoisation

-module (exb) .
—export ([fib/1l, fibfun/01).
fib(0) -> 1;

fib(l) -> 1;
fib(N) -> fib(N-1) + fib(N-2).

fibfun() ->
Cache = dict:new(),
Pid = spawn (fun() -> loop(Cache) end),

fun (N) ->
Pid ! {self (), N},

receive
vV —> V
end

end.

loop (Cache) ->
receive
{Pid, N} ->
case dict:find (N, Cache) of
{ok, Value} ->
NewCache = Cache;
error ->
Value = fib (N),
NewCache = dict:store (N, Value, Cache)
end,
Pid ! Value,
loop (NewCache)
end.

Distribution made easy

» Distribute work load among a number of workers
» Input

» the work to be done, a queue of tasks

» the workers that performs the work (pids)
» What is specific for each problem?

» How to get a chunk of work from the queue

» How to combine results from a single worker with the result from the others

Distribution made easy

» We're done when the queue is empty and we have no active workers.

» We wait for a worker to return a result when the queue is empty or we have no
passive workers

» We activate a worker when the queue is non empty and we have passive workers.

» Initial state is a queue of work, no active workers and a collection of passive
workers.

Distribution made easy

sequential (L) -> lists:filter(fun is prime/1l, L).

process work([], []l, _, State) -> State;
process work(Work, Active, Passive, State)
when Work =:= []; Passive =:= [] ->
receive {Worker, M} ->
process work(Work, lists:delete(Worker, Active),
[Worker | Passive], add result(State, M))
end;
process work(Work, Active, [Worker | Passive], State) ->
{Chunk, Rest} = get chunk(State, Work),
Worker ! {self(), Chunk},

process work(Rest, [Worker | Active], Passive, State).

worker() ->
receive {Pid, Work} ->
Pid ! {self(), sequential(Work)},
worker ()
end.

Linking processes

» Send a message (with Pid ! Message) returns the message.
» This happens even if the process has died
» No delivery receipt
» it process info (Pid) == undefined the process is not alive
» querying the process status is impractical
» A process will run until it
» terminates normally
» is killed by someone else
» is killed by an accident
» A system with several processes will not work if one process ceases to exist
» default is that process death is ignored - no one cares
» The rest of system needs to know about the death of other processes
» Possible actions
» take down other processes
» restart dead process

» restart several other processes

Linking processes

» Processes can be tied together with links
» Two (of several) ways to create links
» 1ink (Pid) -link current process with Pid
» spawn link (Fun)-create new process and link it with current process

» Linking processes means linking their destiny
» Links are bidirectional

» Without additional considerations in place, a process Po linked to P1 will
terminate if P1 terminates (and vice versa)

» This is (slightly) better since we’ll have no silent sending of messages to dead
processes.

» A process that dies/exits will send a signal to linked processes and they will react
by dying as well.

Linking processes

failing () ->
receive
X =>
io:format ("failing, msg: ~p~n", [X]),
X=elrang,

failing ()

end.
124> £(P), P = spawn(fun() -> linking:failing() end).
<0.300.0>
125> P! foo.
failing, msg: foo
foo
=FERROR REPORT==== 4-Nov-2012::09:57:41 ===

Error in process <0.300.0> with exit value:
{{badmatch,elrang}, [{linking, failing,0}]}

Linking processes

parent () ->
Child = spawn link(fun() -> failing() end),
receilve
M ->
10:format ("Parent, msg: ~p~n", [M]),
Child ! M,
parent ()
end.
f(P), P = spawn(fun() -> linking:parent() end).
<0.314.0>
132> Pl!bar.
Parent, msg: bar
bar
failing, msg: bar
133>
=FRROR REPORT==== 4-Nov-2012::10:03:17 ===

Error 1n process <0.315.0> with exit wvalue:
{{badmatch,elrang}, [{linking, failing,0}]}

Pl'hello.
hello
134>

Linking processes

» Much better is to be made aware of a linked process being in trouble
» Catch the signal, convert it to a message and act upon it.

» This is the base for building robust systems that act upon failures

responsible parent () ->
process flag(trap exit, true),
care for ().

care for () ->
Child = spawn link(fun() -> failing() end),
care for (Child).

care for (Child) ->
recelive
{'EXIT', Child, Why} ->
1o0:format ("child died (reason: ~pn), restart it~n"
care for();

M ->
i1o0:format ("Parent, msg: ~p~n", [M]),
Child ! M,

care for (Child)
end.

[(Why]),

Behaviours

» A behaviour in Erlang specifies the interface of a module
» A module must implement the functions specified by the behaviour
» It can implement and export more functions

» A module that implements a behaviour can then be passed to a generic
module expecting that behaviour

» This can also rather easily be implemented using higher order functions

Behaviours

The actual behaviour is specified by the function behaviour info/1
[t should return a list of tuples { functionname, arity}

The actual implementation making use of the implementation can be in the
same module defining the behaviour or in another module.

There is no checking that the module supplied actually implements the
behaviour - this is discovered at runtime.

Example: implement a generic module for caching the values of a (pure) function
call. Since the actual computation might take a long time, we want to avoid
computing the function several times.

General idea:
» Receive a “function call”
» Check the cache if we already have computed the value
» If so, return the value (no change in the cache)

» If not, compute the value, add it to the cache and return the value

-module (cachefun) .
—export ([init/1 , behaviour info/1]).

behaviour info(callbacks) -> [{compute, 1}];
behaviour info() -> undefined.

init (Module) ->
Cache = dict:new(),
Pid = spawn (fun() -> loop (Cache, Module) end),
fun(X) ->
Pid ! {self (), X},
receive V -> V end
end.

loop (Cache, Module) ->
receive {Pid, Arg} ->
case dict:find(Arg, Cache) of
{ok, Value} ->
NewCache = Cache;
error ->
Value = Module:compute (Arqg),
NewCache = dict:store (Arg, Value, Cache)
end,
Pid ! Value,
loop (NewCache, Module)
end.

Behaviours

» fibfun () returns a function

» ?MODULE is a macro returning the module name

-module (fibcache) .

-behaviour (cachefun) .

—-export ([compute/1, fibfun/07]).
fibfun() -> cachefun:init (?MODULE) .
compute (N) -> fib (N).

fib(0) -> 0;

fib (1) -> 1;
fib(N) -> fib(N-1) + fib (N-2).

3> F= fibcache:fibfun().
#Fun<cachefun.1.45378360>
4> F(40) .

Standard behaviours

) gen server - implements a generic server, supporting

» request/response (synchronous calls)

» commands (requests without response, or asynchronous calls)
» code upgrade
4

You implement the specific details for handling state and responding to the
calls, the generic server takes care of the rest

) supervisor - implements generic functions for supervising processes, i.e.,
how the different processes should react when process die etc.

» gen fsm-finite state machine; you code the states, events and transistions and

the generic machine takes care of the rest.

Code loading

One core feature of Erlang is the ability to load new code during runtime

To cater for scenarios where you “long” running processes Erlang actually
supports holding two versions (current and old) of a module at a given time.

When a new version is loaded the old is thrown away, the (previously) current
becomes the old and newly loaded becomes the current.

This works for external calls, i.e., a module calls another using a module prefix.
For an internal call a name always refers to the code version in the module

» a process holding a reference to an old module might fail due to the code
being unloaded and thrown away

This is “solved” by always calling with the module prefix, but it also means that
the function has to be exported.

» the current (newest) version is always called
-module (server) .

—-export ([loop/1]) .

loop (State) ->

<walt for messages and compute new state>,
server:loop (NewState) .

Binaries

The telecom world is full of protocols, often at a very low level, i.e., 3 bits for
this, followed by 7 bits for that etc.

Erlang makes it very easy to manipulate bit strings, treating them in a very nice
abstract manner.

External syntax <<. .>> where .. is a sequence of bit field specifiers
A binary is a datatype in the same way as numbers, terms, lists etc
» integers must be converted to and from binaries
Instead of masking and shifting one can extract bitfields through matching

Similarly, one can construct a binary the same way.

decode parts(<<T:1, F:3, U:2, S:2>>) ->
{T:: 4 F[U[S}.

encode parts({Flag, F, U, S}) ->
T = 1f Flag -> 1;
true -> 0
end,
<<T:1, F:3, U:2, S:2>>.

Binaries

» Decoding an IP (V4) datagram

1p datagram(Dgram) ->
Size = byte size (Dgram),
case Dgram of
<<?IP VERSION:4, HLen:4, SrvcType:8, TotLen:1lo,
ID:16, Flgs:3, FragOff:13,
TTL:8, Proto:8, HdrChkSum:16,

SrcIP:32,

DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<Size ->
OptsLen = 4* (HLen - ?2IP MIN HDR LEN),
<<Opts:0ptslLen/binary,Data/binary>> = RestDgram,

end.

Storage and Persistence

» Any real life application will have the need to handle larger amounts of data
» in memory (with pragmatic access)
» persistently (still there after a restart)
) efficient access (constant)
» distributed
» Erlang provide several options
» process dictionary - “global storage” for a process (limited use)
» ets - erlang term storage, table based, in memory, belongs to a process
» dets - disk based ets, persistent (similar to ets in operations, but slower)

» mnesia - database built on which support transactions and distribution

vV VvV VvV VvV Vv Vv VY

Erlang Summary

Untyped language with a functional core.

Evolved rather than designed.

Designed for fault tolerance, distribution and robustness.

Excellent handling of processes.

Not an excellent language for abstraction and “normal” software engineering.
Not so well designed in terms of syntax and some semantics.

Some rather horrible constructions.

Uncovered topics
» most of the standard libraries (otp)
» tools surrounding development and releases
» behaviours, generic servers

» lots of details

More about Erlang

» Covered the basics of Erlang and distributed and concurrent programming

» OTP, Supervisors, behaviours, gen_server, rebar, eunit, proper, dialyzer, standard
libraries, persistence in various forms, bit syntax, code loading, actual side effects

» Good book
» Erlang and OTP in Action by Martin Logan, Eric Meritt, Richard Carlsson.

