
Cons T Åhs
cahs@cisco.com/cons@tail-f.com

@lisztspace

Distributed Programming with Erlang
A crash course

mailto:cahs@cisco.com
mailto:cons@tail-f.com

Cons T Åhs

‣ Technical Leader at Cisco since two weeks ago

‣ Developing network configuration and management tools in Erlang

‣ Previously

‣ Senior developer/architect, Keeper of The Code at Klarna (probably
Sweden's largest collection of Erlang developers)

‣ Consultant; online poker, low level networking, medical imaging, graphics,
finance, musical notation, compilers, real time video decoding, teaching..

‣ Lecturer at Uppsala University, research & teaching; foundations,
algorithms, functions, relations, objects, compilers, pragmatics, theory,
theorem proving, formal program correctness..

Erlang - The Language

‣ Conceived at Ericsson

‣ Buzzword compliancy

‣ Functional - no side effects

‣ Robust - built for fault tolerance and high availability

‣ Runs in a virtual machine (VM) called beam

‣ Extremely lightweight processes - from 309 words

‣ Easy to distribute among cores, VMs and machines

‣ No shared memory between processes

‣ Processes communicate asynchronously through mail boxes

‣ OTP - Open Telecom Platform

A Functional Language

‣ Dynamically typed functional language

‣ No side effects; variables are bound once and the value can not be changed

‣ trying to reassign a variable will crash the program

‣ Every expression computes a value

‣ Pattern matching provides parallel binding and compact programs (mixed
blessing - beware!)

‣ Looks very much like Prolog

‣ A function is determined by both name and arity

‣ functions are divided in clauses

‣ function bodies are sequences of expressions

‣ Includes the power of higher order functions and closures

Basic Workings

‣ The file example.erl holds module example

‣ The exported functions constitutes the interface of the module

‣ Access exported functions with module:fun(<args>)

‣ Erlang is started with erl presenting you with a basic REPL (read-eval-print
loop)

‣ enter expressions and see value

‣ Use c/1 to compile a file

‣ Use l/1 to load a compiled file [lowercase ‘L’]

Factorial

‣ Stored in file fact.erl - an erlang module corresponds to a single file

‣ Only exported functions (factorial/1) are available externally

‣ Clauses are tested in order

‣ Clauses are separated with a semicolon

‣ Last clause ends with a period

‣ Variables starts with a uppercase character

‣ The expression after when is called a guard - limited set of operators allowed, not
any arbitrary function call

‣ Why is the version on the right better?

-module(fact).
!
-export([factorial/1]).
!
factorial(N) when N > 0 ->
N*factorial(N-1);

factorial(0) -> 1.

-module(fact).
!
-export([factorial/1]).
!
factorial(N) -> factorial(N, 1).
!
factorial(N, F) when N > 0 ->
factorial(N-1, F*N);

factorial(0, F) -> F.

Append lists

‣ List syntax

‣ [] for empty list

‣ [Head | Tail] pattern for head and tail of list

‣ [1, 2, 3] list of three element

‣ Pattern matching can be used in clauses

‣ Runtime error if there is no clause matching the call

‣ What’s the complexity of this function?

‣ The builtin ++ operator does the same thing, so L1 ++ L2 appends the lists.

-module(append).
!
-export([append/2]).
!
append([], L) -> L;
append([X|Xs], L) -> [X|append(Xs, L)].

Usage

‣ Function call uses both module and function name

‣ Erlang has bignums, i.e., arbitrarily large integers

‣ Lists with mixed types are allowed

‣ Erlang is not a typed language

‣ Type errors not caught at compile time

2> fact:factorial(10).
3628800
3> fact:factorial(100).
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000
!
7> append:append([1,2,3],[a,b,c]).
[1,2,3,a,b,c]
8>

Tuples

‣ You can group N (N≥0) things in a tuple

‣ Pattern matching can be done on tuples as well as lists

‣ _ is an anonymous variable, i.e., a placeholder for an ignored value

‣ This extends to any variable starting with an underscore, e.g, _Foo

-module(tuples).
!
-export([build/2, first/1, second/1]).
!
build(X, Y) -> {X, Y}.
!
first({X, _}) -> X.
!
second({_, Y}) -> Y.

Conditional computation

‣ Pattern matching together with clauses is one way of doing conditional
computation.

‣ The traditional way in a functional language is to supply a built in construct

‣ C -> E1; E2

‣ C is an arbitrary expression that evaluates to true or false

‣ If C evaluates to true, E1 is evaluated and the value returned

‣ If C evaluates to false, E2 is evaluated and the value returned

‣ Why is this described with the term “construct” instead of “function”?

‣ Some languages got this extremely right from the start, Erlang did not..

Conditional - case

‣ Evaluate expression and match different results

‣ Cases are separated with semicolon

‣ Last case clause does not end with semicolon (or period)

‣ An end marks the end of the case clauses

‣ The result of the expression can be any type, which is reflected in the case clauses

‣ Variables can be bound in the patterns

case lists:member(3, L) of
true -> ... ;
false -> ...

end
!
case foo(X, Y, Z) of
ok -> ... ;
[] -> ... ;
{U, V} -> ...U..V

end

Conditional - if

‣ This is not a traditional function if!

‣ One can not write arbitrary expressions in the conditional, only guards

‣ Erlang’s if is generally considered to be broken and you’ll actually very seldom
see it used in real programs.

‣ case and/or pattern matching is used instead

‣ A guard is an expression consisting only of operators and built in functions

‣ A construct to make computation efficient

if
integer(X) -> ... ;
tuple(X) -> ... ;
N > 0 -> ...
true -> ...

end

Compute length of list

-module(ex1).
!
-export([rlen/1
 , tlen/1
]).
!
%% Ordinary recursive definition
rlen([]) -> 0;
rlen([_| L]) -> 1 + rlen(L).
!
%% Tail recursive definition
tlen(L) ->
 tlen(L, 0).
!
%% Tail recursive help function
tlen([], N) -> N;
tlen([_| L], N) -> tlen(L, N+1).

Data representation

‣ Data is built from numbers, atoms, tuples and lists

‣ 11, 42, 4711, 3.141692657

‣ foo, cisco, tail_f, last_name, false

‣ {foo, 12}

‣ {ray, {vec, 0.0, 1.0, 1.2}, {vec, 1, 1, 1}}

‣ [foo, bar, baz]

‣ [{object, 12}, wall, {true, 42}]

‣ Strings are just lists of characters (!)

‣ There is some support for abstraction in the form of records

‣ Also, opaque data such as pids, binaries, refs

Quirk: No Strings(!)

‣ The normal string notation is just syntactic sugar for a list of character codes

‣ Lists of integers that (seem to) represent characters are printed as strings

‣ All list operations can be used on strings

9> append:append("no ", "strings").
"no strings"
10> [97, 98, 99].
"abc"
11>

Records

‣ Syntactic sugar for tuples with first component being the name of the record

‣ A somewhat abstract representation - changes in representation can be hidden

‣ Record syntax can be used in pattern matching

‣ Records were added to the language as an afterthought

-record(person, {name, age=0, length}).
!
mk_person(Name) -> #person{name=Name}.
!
mk_person(Name, Age) ->
#person{name=Name, age=Age}.

!
get_name(#person{name=Name}) -> Name.
!
get_age(Person) -> Person#person.age.
!
change_age(Person, Age) ->
Person#person{age=Age}.

Insert into ordered tree

-module(ex2).
!
-export([cinsert/2]).
!
-record(tree, {info, left=empty, right=empty}).
!
cinsert(E, empty) -> #tree{info = E};
cinsert(E, T = #tree{info = E}) -> T;
cinsert(E, T = #tree{info = I}) when E < I ->
 T#tree{left = cinsert(E, T#tree.left)};
cinsert(E, T = #tree{info = I}) when E > I ->
 T#tree{right = cinsert(E, T#tree.right)}.
!

-module(ex3).
!
-export([empty_tree/0, insert/2]).
!
-record(tree, {info, left=empty, right=empty}).
!
empty_tree() -> empty.
tree_info(#tree{info = I}) -> I.
tree_left(#tree{left = L}) -> L.
tree_right(#tree{left = R}) -> R.
!
is_empty_tree(empty) -> true;
is_empty_tree(#tree{}) -> false.
!
mk_node(E) -> #tree{info = E}.
mk_tree(E, Left, Right) -> #tree{info = E, left = Left, right = Right}.
!
insert(E, Tree) ->
 case is_empty_tree(Tree) of
 true -> mk_node(E);
 false ->
 I = tree_info(Tree),
 if E == I -> Tree;
 E < I ->
 mk_tree(I, insert(E, tree_left(Tree)), tree_right(Tree));
 true ->
 mk_tree(I, tree_left(Tree), insert(E, tree_right(Tree)))
 end
 end.
!

Abstract insert

Similar syntax, different meaning

is_empty_tree(empty) -> true;
is_empty_tree(#tree{}) -> false.

is_empty_tree(empty) -> true;
is_empty_tree(_) -> false.

is_empty_tree(Tree) -> Tree == empty.

is_empty_tree(Tree) -> Tree = empty.

Are these all the same? No.
The types are different

empty | #tree -> true | false

any() -> true | false

any() -> true | false

empty -> empty

The last two shows the difference between binding
and matching

Binding and matching

‣ Variables are single assignment, so the first occurrence of a variable will bind it

‣ In subsequent occurrences, the bound value is used and can not be changed

‣ The = operator does bind and matching (of patterns) and can fail, i.e., generate a
runtime error (if the variable already has a value)

‣ The == operator does only matching (no binding) and returns true or false.

‣ What is the difference between foo1/1 and foo2/1?

foo1(N) ->
X = N,
X = 1.

!
foo2(N) ->
X = N,
X == 1.

Local variables, scope

‣ The scope of a local variable binding is the rest of the clause

‣ This is true even if a variable is introduced by pattern matching in a case clause

f(X, Y) ->
 A = X+Y,
 B = X-Y,
 {A, B}.
!
g(T) ->
 M = case T of
 {N} -> true;
 {N, _} -> false
 end,
 {M, N}.

Higher order functions

‣ Functions are first class citizens

‣ a variable can be bound to a function

‣ a function can be the result of a computation

‣ a function can be passed as an argument

-module(ex4).
!
-export([sorttuples/1
]).
!
sorttuples(Tuples) ->
 Num = fun({_, N}) -> N end,
 Cmp = fun(T1, T2) -> Num(T1) < Num(T2) end,
 lists:sort(Cmp, Tuples).

Higher order functions

‣ Syntax for anonymous functions is rather verbose

‣ Anonymous functions can have several clauses and use pattern matching

‣ A variable can be bound to a function

‣ Apply the function by using the variable instead of a function name

‣ Erlang got this right!

‣ What is the value of hof()?

hof() ->
 F = fun(X) -> X * X + 1 end,
 L = lists:map(F, [1, 2, 3],
!
 G = fun([]) -> nil;
 ([_|_]) -> cons
 end,
!
 Y = G(L),
 Y == nil.

Scoping revisited
‣ The scope of a variable binding is the rest of the function clause

‣ An expression can only access variables bound before the expression

‣ It is not possible to write a local recursive function in the “ordinary” way

no(N) ->
 G = fun(0) -> 1;
 (N) -> N*G(N-1)
 end,
!
 G(N).

‣ It is possible to write a “local recursive” function using higher order functions

‣ Observe that G inside is “just” a function variable so it has to be passed to the
function

‣ This is a good exercise!

‣ Write factorial in this way.

Higher order functions

‣ A function can be returned

‣ Notation for passing a named function as an argument

‣ Describe the functions inclist/1, whatlist/1 and what/2

make_adder(N) ->
fun(X) -> X + N end.

!
inclist(L) ->
lists:map(make_adder(3), L).

!
whatlist(L) ->
 lists:map(fun make_adder/1, L).
!
what(L, V) ->
lists:map(fun(F) -> F(V) end, L).

Higher order functions

‣ Making curried functions suitable for partial application is possible, but quickly
becomes a bit difficult to read.

‣ This is much easier in languages designed for this from the start.

cumbersome(M) ->
MakeAdder = fun(N) ->

fun(X) -> X + N end
 end,

(MakeAdder(3))(M).

Digression on closures

‣ We have the cool feature of being able to return a closure, i.e., a function and
the environment it was defined in.

‣ What does make_what/1 do?

‣ Returns a function of no (?) argument.

‣ It delays a computation!

‣ The body is evaluated only when we apply the result (of make_what/1) to ().

‣ We can thus save and represent a computation and do it later.

make_adder(N) ->
fun(X) -> X + N end.

!
make_what(M) ->
fun() -> fibonacci(M) end.

!
do_it(D) ->
D().

Variables can hold anything
-module(sequences).
-export([plus/2, minus/2]).
!

plus(X, Y) -> X ++ Y.
minus(X, Y) -> X -- Y.

-module(numbers).
-export([plus/2, minus/2]).
!

plus(X, Y) -> X + Y.
minus(X, Y) -> X - Y.

-module(eval).
-export([eval/4]).
!
eval(M, F, A1, A2) ->
 M:F(A1, A2).

10> eval:eval(sequences, plus, [1,2,3], [a,b,c]).
[1,2,3,a,b,c]
11> eval:eval(numbers, plus, 4, 7).
11
12>

Variables can hold anything
‣ A variable can be bound to

‣ ordinary values and functions (no surprise)

‣ function names

‣ modules

‣ This means you can send a whole module M as an argument to another function
and the receiving function then calls known functions in M.

‣ Is this useful?

‣ Yes!

‣ It also means that given a module you can vary the actual function that is called
by passing the name in a variable.

‣ Is this useful?

‣ Possibly.

‣ Both variations lead to the possibility to map, e.g., user input directly to Erlang
modules and functions at runtime.

‣ Great way to make a really insecure system!

Variables can hold anything
‣ We had two modules which exported the same function names and arities

‣ They thus have the same interface!

‣ This concept exists in Erlang, but has the name behaviour

‣ It can be used in the same way as in, e.g., Java by providing several different
implementations of the same (abstract) interface

‣ A very commonly used behaviour is the gen_server (for generic server)

‣ You provide the details and a generic server takes care of the generic parts.

BIFs (Built In Functions)
‣ BIFs exist to provide functionality that can’t be done in pure Erlang

‣ interface with the real world for things like date, time and low level file
system access

‣ conversion between primitive types such as

‣ atom_to_list (convert an atom to a “string”)

‣ list_to_atom (convert a “string” to a (new) atom)

‣ etc

‣ There might also be BIFs for functions that can be implemented in Erlang, but a
BIF will do it faster.

‣ Read documentation!

Standard Libraries
‣ Erlang comes with a large set of standard libraries, e.g,

‣ list function

‣ dictionaries of varying representation

‣ ets, dets - term storage, either in memory or on disk

‣ mnesia - database built on top of dets

‣ etc

‣ Read the documentation

Concurrent and distributed programming

‣ With concurrent programming troubles form when you have a shared and
mutable state.

‣ Problem typically solved by using synchronisation with locks

‣ Complicated - you have to know when to lock

‣ Can lead to more problems - performance degradation

‣ Cooperative model - all parts of the program must agree

‣ Take away one and your on safe ground.

‣ Erlang takes away both!

No shared state, no mutable state

‣ Each process has a state of its own, or rather a sequence of states; possibly a new
state after receiving a message

‣ Each process has a private heap

‣ Each process has a message queue (the implementation handles these)

‣ Processes can not share state, even when they live in the same VM.

‣ All communication must be done with messages.

‣ messages are copied between processes

No shared state

‣ Why?

‣ Background (telecom switches) with a large number of small and short lived
processes

‣ When a process dies there is no risk reclaiming the whole process

‣ No other process can access the memory it used

‣ Nothing happens if you send a message to a dead pid

‣ The dead process can not reference the memory of another process

‣ Leads to robustness

Keeping state in a process

‣ Real world computations need state

‣ State is encoded in a process that reacts to messages

‣ init state

‣ wait for message

‣ compute new state from message and existing state

‣ loop

!
!
!
!

‣ start the actor and send messages to it

start() -> actor(init_state()).!
!
actor(State) ->!
 actor(process_message(get_msg(), State)).

Managing Processes
‣ Three basic primitives are used to handle processes

‣ Create process - returns pid (process id)

!
‣ Send a message - returns Msg

!
‣ Receive a message from the message queue (the process will wait if there is no

message) - returns value of chosen expression

spawn(Function) or spawn(M, F, Args)

Pid ! Msg

receive
Pattern1 -> Expr1;
Pattern2 -> Expr2;
...

end

Simple Message Passing
‣ Note that you have to set up the actual protocol yourself

‣ If you want a reply, a sent message should include a return address

‣ This goes for the reply as well - the original sender might want to know who sent
the reply

‣ This might also apply to request identifiers so a more general request would
contain both a return address and an identifier

‣ Given a simple and light weight protocol you can build a more complicated
protocol (with delivery guarantees) upon it, but not the other way round.

Selective receive
‣ Note that a receive will wait until it finds a message matching the pattern

‣ Messages might not be processed in the order they come

‣ This can be expensive since the message queue has to be searched

receive
foo -> f(..)

end,
receive
 bar -> g(..)
end

Receiving messages

‣ A receive will wait until a message matching a specified pattern is in the
queue.

‣ Messages are processed in an order specified by the receives in the process

‣ Messages are thus not necessarily processed in the order they arrive

‣ The code

‣ reports queue length when acting on a message

‣ messages are processed in the sequence foo, bar, foo, bar, ..

‣ Note use of binding pattern in receive

‣ Why can’t we have the same variable in both receives

foobar() ->
 F = fun(Msg) ->
 {message_queue_len, L} = process_info(self(), message_queue_len),
 io:format("Msg: ~p (~p)~n", [Msg, L])
 end,
!
 receive M0=foo -> F(M0) end,
 receive M1=bar -> F(M1) end,
 foobar().

Example
start() -> server(0).
!
server(Count) ->
 NewCount = receive
 {report, Pid} ->
 Pid ! Count,
 Count;
 _Msg -> Count + 1
 end,
 server(NewCount).
!
32> P = spawn(fun simple:start/0).
<0.110.0>
33> P!foo.
foo
34> P!foo.
foo
35> P!foo.
foo
36> P!{report, self()}.
{report,<0.88.0>}
37> receive M -> M end.
3

Efficient computation through memoisation

‣ Consider a computationally intensive function

‣ Fibonacci, Ackermann, ..

‣ Instead of computing the value each time, one can remember the values and
serve them when a new request comes

‣ If we know the value, return it

‣ Otherwise, compute it, remember it, return it

‣ It’s actually a cache!

‣ The cache (a mapping from argument(s) to value) is encoded in the state of a
process

Efficient computation through memoisation
-module(ex5).
!
-export([fib/1, fibfun/0]).
!
fib(0) -> 1;
fib(1) -> 1;
fib(N) -> fib(N-1) + fib(N-2).
!
fibfun() ->
 Cache = dict:new(),
 Pid = spawn(fun() -> loop(Cache) end),
 fun(N) ->
 Pid ! {self(), N},
 receive
 V -> V
 end
 end.
!
loop(Cache) ->
 receive
 {Pid, N} ->
 case dict:find(N, Cache) of
 {ok, Value} ->
 NewCache = Cache;
 error ->
 Value = fib(N),
 NewCache = dict:store(N, Value, Cache)
 end,
 Pid ! Value,
 loop(NewCache)
 end.

Distribution made easy

‣ Distribute work load among a number of workers

‣ Input

‣ the work to be done, a queue of tasks

‣ the workers that performs the work (pids)

‣ What is specific for each problem?

‣ How to get a chunk of work from the queue

‣ How to combine results from a single worker with the result from the others

Distribution made easy

‣ We’re done when the queue is empty and we have no active workers.

‣ We wait for a worker to return a result when the queue is empty or we have no
passive workers

‣ We activate a worker when the queue is non empty and we have passive workers.

‣ Initial state is a queue of work, no active workers and a collection of passive
workers.

Distribution made easy

sequential(L) -> lists:filter(fun is_prime/1, L).!
!
process_work([], [], _, State) -> State;!
process_work(Work, Active, Passive, State)!
 when Work =:= []; Passive =:= [] ->!
 receive {Worker, M} ->!
 process_work(Work, lists:delete(Worker, Active),!
 [Worker | Passive], add_result(State, M))!
 end;!
process_work(Work, Active, [Worker | Passive], State) ->!
 {Chunk, Rest} = get_chunk(State, Work),!
 Worker ! {self(), Chunk},!
 process_work(Rest, [Worker | Active], Passive, State).!
!
worker() ->!
 receive {Pid, Work} ->!
 Pid ! {self(), sequential(Work)},!
 worker()!
 end.!

Linking processes
‣ Send a message (with Pid ! Message) returns the message.

‣ This happens even if the process has died

‣ No delivery receipt

‣ if process_info(Pid) == undefined the process is not alive

‣ querying the process status is impractical

‣ A process will run until it

‣ terminates normally

‣ is killed by someone else

‣ is killed by an accident

‣ A system with several processes will not work if one process ceases to exist

‣ default is that process death is ignored - no one cares

‣ The rest of system needs to know about the death of other processes

‣ Possible actions

‣ take down other processes

‣ restart dead process

‣ restart several other processes

‣ Processes can be tied together with links

‣ Two (of several) ways to create links

‣ link(Pid) - link current process with Pid

‣ spawn_link(Fun)- create new process and link it with current process

‣ Linking processes means linking their destiny

‣ Links are bidirectional

‣ Without additional considerations in place, a process P0 linked to P1 will
terminate if P1 terminates (and vice versa)

‣ This is (slightly) better since we’ll have no silent sending of messages to dead
processes.

‣ A process that dies/exits will send a signal to linked processes and they will react
by dying as well.

Linking processes

Linking processes
failing() ->
 receive
 X ->
 io:format("failing, msg: ~p~n", [X]),
 X=elrang,
 failing()
 end.

124> f(P), P = spawn(fun() -> linking:failing() end).
<0.300.0>
125> P!foo.
failing, msg: foo
foo
!
=ERROR REPORT==== 4-Nov-2012::09:57:41 ===
Error in process <0.300.0> with exit value:
{{badmatch,elrang},[{linking,failing,0}]}

Linking processes
parent() ->
 Child = spawn_link(fun() -> failing() end),
 receive
 M ->
 io:format("Parent, msg: ~p~n", [M]),
 Child ! M,
 parent()
 end.

f(P), P = spawn(fun() -> linking:parent() end).
<0.314.0>
132> P!bar.
Parent, msg: bar
bar
failing, msg: bar
133>
=ERROR REPORT==== 4-Nov-2012::10:03:17 ===
Error in process <0.315.0> with exit value:
{{badmatch,elrang},[{linking,failing,0}]}
!
P!hello.
hello
134>

Linking processes
‣ Much better is to be made aware of a linked process being in trouble

‣ Catch the signal, convert it to a message and act upon it.

‣ This is the base for building robust systems that act upon failures

responsible_parent() ->
 process_flag(trap_exit, true),
 care_for().
!
care_for() ->
 Child = spawn_link(fun() -> failing() end),
 care_for(Child).
!
care_for(Child) ->
 receive
 {'EXIT', Child, Why} ->
 io:format("child died (reason: ~pn), restart it~n", [Why]),
 care_for();
 M ->
 io:format("Parent, msg: ~p~n", [M]),
 Child ! M,
 care_for(Child)
 end.

Behaviours
‣ A behaviour in Erlang specifies the interface of a module

‣ A module must implement the functions specified by the behaviour

‣ It can implement and export more functions

‣ A module that implements a behaviour can then be passed to a generic
module expecting that behaviour

‣ This can also rather easily be implemented using higher order functions

Behaviours
‣ The actual behaviour is specified by the function behaviour_info/1

‣ It should return a list of tuples {functionname, arity}

‣ The actual implementation making use of the implementation can be in the
same module defining the behaviour or in another module.

‣ There is no checking that the module supplied actually implements the
behaviour - this is discovered at runtime.

‣ Example: implement a generic module for caching the values of a (pure) function
call. Since the actual computation might take a long time, we want to avoid
computing the function several times.

‣ General idea:

‣ Receive a “function call”

‣ Check the cache if we already have computed the value

‣ If so, return the value (no change in the cache)

‣ If not, compute the value, add it to the cache and return the value

-module(cachefun).
!
-export([init/1 , behaviour_info/1]).
!
behaviour_info(callbacks) -> [{compute, 1}];
behaviour_info(_) -> undefined.
!
init(Module) ->
 Cache = dict:new(),
 Pid = spawn(fun() -> loop(Cache, Module) end),
 fun(X) ->
 Pid ! {self(), X},
 receive V -> V end
 end.
!
loop(Cache, Module) ->
 receive {Pid, Arg} ->
 case dict:find(Arg, Cache) of
 {ok, Value} ->
 NewCache = Cache;
 error ->
 Value = Module:compute(Arg),
 NewCache = dict:store(Arg, Value, Cache)
 end,
 Pid ! Value,
 loop(NewCache, Module)
 end.

-module(fibcache).
!
-behaviour(cachefun).
!
-export([compute/1, fibfun/0]).
!
fibfun() -> cachefun:init(?MODULE).
!
compute(N) -> fib(N).
!
fib(0) -> 0;
fib(1) -> 1;
fib(N) -> fib(N-1) + fib(N-2).

Behaviours
‣ fibfun() returns a function

‣ ?MODULE is a macro returning the module name

3> F= fibcache:fibfun().
#Fun<cachefun.1.45378360>
4> F(40).

Standard behaviours
‣ gen_server - implements a generic server, supporting

‣ request/response (synchronous calls)

‣ commands (requests without response, or asynchronous calls)

‣ code upgrade

‣ You implement the specific details for handling state and responding to the
calls, the generic server takes care of the rest

‣ supervisor - implements generic functions for supervising processes, i.e.,
how the different processes should react when process die etc.

‣ gen_fsm - finite state machine; you code the states, events and transistions and
the generic machine takes care of the rest.

Code loading
‣ One core feature of Erlang is the ability to load new code during runtime

‣ To cater for scenarios where you “long” running processes Erlang actually
supports holding two versions (current and old) of a module at a given time.

‣ When a new version is loaded the old is thrown away, the (previously) current
becomes the old and newly loaded becomes the current.

‣ This works for external calls, i.e., a module calls another using a module prefix.

‣ For an internal call a name always refers to the code version in the module

‣ a process holding a reference to an old module might fail due to the code
being unloaded and thrown away

‣ This is “solved” by always calling with the module prefix, but it also means that
the function has to be exported.

‣ the current (newest) version is always called

-module(server).
!
-export([loop/1]).
!
loop(State) ->
 <wait for messages and compute new state>,
 server:loop(NewState).

Binaries
‣ The telecom world is full of protocols, often at a very low level, i.e., 3 bits for

this, followed by 7 bits for that etc.

‣ Erlang makes it very easy to manipulate bit strings, treating them in a very nice
abstract manner.

‣ External syntax <<..>> where .. is a sequence of bit field specifiers

‣ A binary is a datatype in the same way as numbers, terms, lists etc

‣ integers must be converted to and from binaries

‣ Instead of masking and shifting one can extract bitfields through matching

‣ Similarly, one can construct a binary the same way.

decode_parts(<<T:1, F:3, U:2, S:2>>) ->
 {T==1, F, U, S}.
!
encode_parts({Flag, F, U, S}) ->
 T = if Flag -> 1;
 true -> 0
 end,
 <<T:1, F:3, U:2, S:2>>.

Binaries
‣ Decoding an IP (V4) datagram

ip_datagram(Dgram) ->
 Size = byte_size(Dgram),
 case Dgram of
 <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
 ID:16, Flgs:3, FragOff:13,
 TTL:8, Proto:8, HdrChkSum:16,
 SrcIP:32,
 DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<Size ->
 OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
 <<Opts:OptsLen/binary,Data/binary>> = RestDgram,
 ...
 end.

Storage and Persistence
‣ Any real life application will have the need to handle larger amounts of data

‣ in memory (with pragmatic access)

‣ persistently (still there after a restart)

‣ efficient access (constant)

‣ distributed

‣ Erlang provide several options

‣ process dictionary - “global storage” for a process (limited use)

‣ ets - erlang term storage, table based, in memory, belongs to a process

‣ dets - disk based ets, persistent (similar to ets in operations, but slower)

‣ mnesia - database built on which support transactions and distribution

Erlang Summary
‣ Untyped language with a functional core.

‣ Evolved rather than designed.

‣ Designed for fault tolerance, distribution and robustness.

‣ Excellent handling of processes.

‣ Not an excellent language for abstraction and “normal” software engineering.

‣ Not so well designed in terms of syntax and some semantics.

‣ Some rather horrible constructions.

!
‣ Uncovered topics

‣ most of the standard libraries (otp)

‣ tools surrounding development and releases

‣ behaviours, generic servers

‣ lots of details

More about Erlang

‣ Covered the basics of Erlang and distributed and concurrent programming

‣ OTP, Supervisors, behaviours, gen_server, rebar, eunit, proper, dialyzer, standard
libraries, persistence in various forms, bit syntax, code loading, actual side effects
..

‣ Good book

‣ Erlang and OTP in Action by Martin Logan, Eric Meritt, Richard Carlsson.

