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Cons T Åhs

‣ Technical Leader at Cisco since two weeks ago 

‣ Developing network configuration and management tools in Erlang 

‣ Previously 

‣ Senior developer/architect, Keeper of The Code at Klarna (probably 
Sweden's largest collection of Erlang developers) 

‣ Consultant; online poker, low level networking, medical imaging, graphics, 
finance, musical notation, compilers, real time video decoding, teaching.. 

‣ Lecturer at Uppsala University, research & teaching; foundations, 
algorithms, functions, relations, objects, compilers, pragmatics, theory, 
theorem proving, formal program correctness..



Erlang - The Language

‣ Conceived at Ericsson 

‣ Buzzword compliancy 

‣ Functional - no side effects 

‣ Robust - built for fault tolerance and high availability 

‣ Runs in a virtual machine (VM) called beam 

‣ Extremely lightweight processes - from 309 words 

‣ Easy to distribute among cores, VMs and machines 

‣ No shared memory between processes 

‣ Processes communicate asynchronously through mail boxes 

‣ OTP - Open Telecom Platform



A Functional Language

‣ Dynamically typed functional language 

‣ No side effects; variables are bound once and the value can not be changed 

‣ trying to reassign a variable will crash the program 

‣ Every expression computes a value 

‣ Pattern matching provides parallel binding and compact programs (mixed 
blessing - beware!) 

‣ Looks very much like Prolog 

‣ A function is determined by both name and arity 

‣ functions are divided in clauses 

‣ function bodies are sequences of expressions 

‣ Includes the power of higher order functions and closures



Basic Workings

‣ The file example.erl holds module example 

‣ The exported functions constitutes the interface of the module 

‣ Access exported functions with module:fun(<args>) 

‣ Erlang is started with erl presenting you with a basic REPL (read-eval-print 
loop) 

‣ enter expressions and see value 

‣ Use c/1 to compile a file 

‣ Use l/1 to load a compiled file [lowercase ‘L’]



Factorial

‣ Stored in file fact.erl - an erlang module corresponds to a single file 

‣ Only exported functions (factorial/1) are available externally 

‣ Clauses are tested in order 

‣ Clauses are separated with a semicolon 

‣ Last clause ends with a period 

‣ Variables starts with a uppercase character 

‣ The expression after when is called a guard - limited set of operators allowed, not 
any arbitrary function call 

‣ Why is the version on the right better?

-module(fact). 
!
-export([factorial/1]). 
!
factorial(N) when N > 0 -> 
N*factorial(N-1); 

factorial(0) -> 1.

-module(fact). 
!
-export([factorial/1]). 
!
factorial(N) -> factorial(N, 1). 
!
factorial(N, F) when N > 0 -> 
factorial(N-1, F*N); 

factorial(0, F) -> F.



Append lists

‣ List syntax 

‣ [] for empty list 

‣ [Head | Tail] pattern for head and tail of list 

‣ [1, 2, 3] list of three element 

‣ Pattern matching can be used in clauses 

‣ Runtime error if there is no clause matching the call 

‣ What’s the complexity of this function? 

‣ The builtin ++ operator does the same thing, so L1 ++ L2 appends the lists.

-module(append). 
!
-export([append/2]). 
!
append([], L) -> L; 
append([X|Xs], L) -> [X|append(Xs, L)].



Usage

‣ Function call uses both module and function name 

‣ Erlang has bignums, i.e., arbitrarily large integers 

‣ Lists with mixed types are allowed 

‣ Erlang is not a typed language 

‣ Type errors not caught at compile time

2> fact:factorial(10). 
3628800 
3> fact:factorial(100). 
93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082
7223758251185210916864000000000000000000000000 
!
7> append:append([1,2,3],[a,b,c]). 
[1,2,3,a,b,c] 
8> 



Tuples

‣ You can group N (N≥0) things in a tuple 

‣ Pattern matching can be done on tuples as well as lists 

‣ _ is an anonymous variable, i.e., a placeholder for an ignored value 

‣ This extends to any variable starting with an underscore, e.g, _Foo

-module(tuples). 
!
-export([build/2, first/1, second/1]). 
!
build(X, Y) -> {X, Y}. 
!
first({X, _}) -> X. 
!
second({_, Y}) -> Y.



Conditional computation

‣ Pattern matching together with clauses is one way of doing conditional 
computation. 

‣ The traditional way in a functional language is to supply a built in construct 

‣ C -> E1; E2 

‣ C is an arbitrary expression that evaluates to true or false 

‣ If C evaluates to true, E1 is evaluated and the value returned 

‣ If C evaluates to false, E2 is evaluated and the value returned 

‣ Why is this described with the term “construct” instead of “function”? 

‣ Some languages got this extremely right from the start, Erlang did not..



Conditional - case

‣ Evaluate expression and match different results 

‣ Cases are separated with semicolon 

‣ Last case clause does not end with semicolon (or period) 

‣ An end marks the end of the case clauses 

‣ The result of the expression can be any type, which is reflected in the case clauses 

‣ Variables can be bound in the patterns

case lists:member(3, L) of 
true -> ... ; 
false -> ... 

end 
!
case foo(X, Y, Z) of 
ok -> ... ; 
[] -> ... ; 
{U, V} -> ...U..V 

end



Conditional - if

‣ This is not a traditional function if! 

‣ One can not write arbitrary expressions in the conditional, only guards 

‣ Erlang’s if is generally considered to be broken and you’ll actually very seldom 
see it used in real programs. 

‣ case and/or pattern matching is used instead 

‣ A guard is an expression consisting only of operators and built in functions 

‣ A construct to make computation efficient

if 
integer(X) -> ... ; 
tuple(X) -> ... ; 
N > 0 -> ... 
true -> ... 

end



Compute length of list

-module(ex1). 
!
-export([ rlen/1 
        , tlen/1 
        ]). 
!
%% Ordinary recursive definition 
rlen([])     -> 0; 
rlen([_| L]) -> 1 + rlen(L). 
!
%% Tail recursive definition 
tlen(L) -> 
  tlen(L, 0). 
!
%% Tail recursive help function 
tlen([], N)     -> N; 
tlen([_| L], N) -> tlen(L, N+1). 



Data representation

‣ Data is built from numbers, atoms, tuples and lists 

‣  11, 42, 4711, 3.141692657 

‣  foo, cisco, tail_f, last_name, false 

‣  {foo, 12} 

‣  {ray, {vec, 0.0, 1.0, 1.2}, {vec, 1, 1, 1}} 

‣  [foo, bar, baz] 

‣  [{object, 12}, wall, {true, 42}] 

‣ Strings are just lists of characters (!) 

‣ There is some support for abstraction in the form of records 

‣ Also, opaque data such as pids, binaries, refs



Quirk: No Strings(!)

‣ The normal string notation is just syntactic sugar for a list of character codes 

‣ Lists of integers that (seem to) represent characters are printed as strings 

‣ All list operations can be used on strings

9> append:append("no ", "strings"). 
"no strings" 
10> [97, 98, 99]. 
"abc" 
11> 



Records

‣ Syntactic sugar for tuples with first component being the name of the record 

‣ A somewhat abstract representation - changes in representation can be hidden 

‣ Record syntax can be used in pattern matching 

‣ Records were added to the language as an afterthought

-record(person, {name, age=0, length}). 
!
mk_person(Name) -> #person{name=Name}. 
!
mk_person(Name, Age) -> 
#person{name=Name, age=Age}. 

!
get_name(#person{name=Name}) -> Name. 
!
get_age(Person) -> Person#person.age. 
!
change_age(Person, Age) -> 
Person#person{age=Age}.



Insert into ordered tree

-module(ex2). 
!
-export([cinsert/2]). 
!
-record(tree, {info, left=empty, right=empty}). 
!
cinsert(E, empty) -> #tree{info = E}; 
cinsert(E, T = #tree{info = E}) -> T; 
cinsert(E, T = #tree{info = I}) when E < I -> 
  T#tree{left = cinsert(E, T#tree.left)}; 
cinsert(E, T = #tree{info = I}) when E > I -> 
  T#tree{right = cinsert(E, T#tree.right)}. 
!



-module(ex3). 
!
-export([ empty_tree/0, insert/2]). 
!
-record(tree, {info, left=empty, right=empty}). 
!
empty_tree()               -> empty. 
tree_info(#tree{info = I}) -> I. 
tree_left(#tree{left = L}) -> L. 
tree_right(#tree{left = R}) -> R. 
!
is_empty_tree(empty)   -> true; 
is_empty_tree(#tree{}) -> false. 
!
mk_node(E)              -> #tree{info = E}. 
mk_tree(E, Left, Right) -> #tree{info = E, left = Left, right = Right}. 
!
insert(E, Tree) -> 
  case is_empty_tree(Tree) of 
    true  -> mk_node(E); 
    false -> 
      I = tree_info(Tree), 
      if E == I -> Tree; 
         E < I -> 
          mk_tree(I, insert(E, tree_left(Tree)), tree_right(Tree)); 
         true -> 
          mk_tree(I, tree_left(Tree), insert(E, tree_right(Tree))) 
      end 
  end. 
!

Abstract insert



Similar syntax, different meaning

is_empty_tree(empty)   -> true; 
is_empty_tree(#tree{}) -> false.

is_empty_tree(empty) -> true; 
is_empty_tree(_)     -> false.

is_empty_tree(Tree) -> Tree == empty.

is_empty_tree(Tree) -> Tree = empty.

Are these all the same? No. 
The types are different

empty | #tree -> true | false

any() -> true | false

any() -> true | false

empty -> empty

The last two shows the difference between binding 
and matching



Binding and matching

‣ Variables are single assignment, so the first occurrence of a variable will bind it 

‣ In subsequent occurrences, the bound value is used and can not be changed 

‣ The = operator does bind and matching (of patterns) and can fail, i.e., generate a 
runtime error (if the variable already has a value) 

‣ The == operator does only matching (no binding) and returns true or false. 

‣ What is the difference between foo1/1 and foo2/1?

foo1(N) -> 
X = N, 
X = 1. 

!
foo2(N) -> 
X = N, 
X == 1.



Local variables, scope

‣ The scope of a local variable binding is the rest of the clause 

‣ This is true even if a variable is introduced by pattern matching in a case clause

f(X, Y) -> 
    A = X+Y, 
    B = X-Y, 
    {A, B}. 
!
g(T) -> 
    M = case T of 
     {N} -> true; 
     {N, _} -> false 
 end, 
    {M, N}. 



Higher order functions

‣ Functions are first class citizens 

‣ a variable can be bound to a function 

‣ a function can be the result of a computation 

‣ a function can be passed as an argument

-module(ex4). 
!
-export([ sorttuples/1 
        ]). 
!
sorttuples(Tuples) -> 
  Num = fun({_, N}) -> N end, 
  Cmp = fun(T1, T2) -> Num(T1) < Num(T2) end, 
  lists:sort(Cmp, Tuples). 



Higher order functions

‣ Syntax for anonymous functions is rather verbose 

‣ Anonymous functions can have several clauses and use pattern matching 

‣ A variable can be bound to a function 

‣ Apply the function by using the variable instead of a function name 

‣ Erlang got this right! 

‣ What is the value of hof()?

hof() -> 
  F = fun(X) -> X * X + 1 end, 
  L = lists:map(F, [1, 2, 3], 
!
  G = fun([])    -> nil; 
         ([_|_]) -> cons 
      end, 
!
  Y = G(L), 
  Y == nil.



Scoping revisited
‣ The scope of a variable binding is the rest of the function clause 

‣ An expression can only access variables bound before the expression 

‣ It is not possible to write a local recursive function in the “ordinary” way

no(N) -> 
  G = fun(0) -> 1; 
         (N) -> N*G(N-1) 
      end, 
!
  G(N).

‣ It is possible to write a “local recursive” function using higher order functions 

‣ Observe that G inside is “just” a function variable so it has to be passed to the 
function 

‣ This is a good exercise! 

‣ Write factorial in this way.



Higher order functions

‣ A function can be returned 

‣ Notation for passing a named function as an argument 

‣ Describe the functions inclist/1, whatlist/1 and what/2

make_adder(N) -> 
fun(X) -> X + N end. 

!
inclist(L) -> 
lists:map(make_adder(3), L). 

!
whatlist(L) -> 
  lists:map(fun make_adder/1, L). 
!
what(L, V) -> 
lists:map(fun(F) -> F(V) end, L).



Higher order functions

‣ Making curried functions suitable for partial application is possible, but quickly 
becomes a bit difficult to read. 

‣ This is much easier in languages designed for this from the start.

cumbersome(M) -> 
MakeAdder = fun(N) -> 

fun(X) -> X + N end 
 end, 

(MakeAdder(3))(M).



Digression on closures

‣ We have the cool feature of being able to return a closure, i.e., a function and 
the environment it was defined in. 

‣ What does make_what/1 do? 

‣ Returns a function of no (?) argument. 

‣ It delays a computation! 

‣ The body is evaluated only when we apply the result (of make_what/1) to (). 

‣ We can thus save and represent a computation and do it later.

make_adder(N) -> 
fun(X) -> X + N end. 

!
make_what(M) -> 
fun() -> fibonacci(M) end. 

!
do_it(D) -> 
D().



Variables can hold anything
-module(sequences). 
-export([plus/2, minus/2]). 
!

plus(X, Y) -> X ++ Y. 
minus(X, Y) -> X -- Y.

-module(numbers). 
-export([plus/2, minus/2]). 
!

plus(X, Y) -> X + Y. 
minus(X, Y) -> X - Y.

-module(eval). 
-export([eval/4]). 
!
eval(M, F, A1, A2) -> 
    M:F(A1, A2).

10> eval:eval(sequences, plus, [1,2,3], [a,b,c]). 
[1,2,3,a,b,c] 
11> eval:eval(numbers, plus, 4, 7). 
11 
12> 



Variables can hold anything
‣ A variable can be bound to 

‣ ordinary values and functions (no surprise) 

‣ function names 

‣ modules 

‣ This means you can send a whole module M as an argument to another function 
and the receiving function then calls known functions in M. 

‣ Is this useful? 

‣ Yes! 

‣ It also means that given a module you can vary the actual function that is called 
by passing the name in a variable. 

‣ Is this useful? 

‣ Possibly. 

‣ Both variations lead to the possibility to map, e.g., user input directly to Erlang 
modules and functions at runtime. 

‣ Great way to make a really insecure system!



Variables can hold anything
‣ We had two modules which exported the same function names and arities 

‣ They thus have the same interface! 

‣ This concept exists in Erlang, but has the name behaviour 

‣ It can be used in the same way as in, e.g., Java by providing several different 
implementations of the same (abstract) interface 

‣ A very commonly used behaviour is the gen_server (for generic server) 

‣ You provide the details and a generic server takes care of the generic parts.



BIFs (Built In Functions)
‣ BIFs exist to provide functionality that can’t be done in pure Erlang 

‣ interface with the real world for things like date, time and low level file 
system access 

‣ conversion between primitive types such as 

‣ atom_to_list (convert an atom to a “string”) 

‣ list_to_atom (convert a “string” to a (new) atom) 

‣ etc 

‣ There might also be BIFs for functions that can be implemented in Erlang, but a 
BIF will do it faster. 

‣ Read documentation!



Standard Libraries
‣ Erlang comes with a large set of standard libraries, e.g, 

‣ list function 

‣ dictionaries of varying representation 

‣ ets, dets - term storage, either in memory or on disk 

‣ mnesia - database built on top of dets 

‣ etc 

‣ Read the documentation



Concurrent and distributed programming

‣ With concurrent programming troubles form when you have a shared and 
mutable state. 

‣ Problem typically solved by using synchronisation with locks 

‣ Complicated - you have to know when to lock 

‣ Can lead to more problems - performance degradation 

‣ Cooperative model - all parts of the program must agree 

‣ Take away one and your on safe ground. 

‣ Erlang takes away both!



No shared state, no mutable state

‣ Each process has a state of its own, or rather a sequence of states; possibly a new 
state after receiving a message 

‣ Each process has a private heap 

‣ Each process has a message queue (the implementation handles these) 

‣ Processes can not share state, even when they live in the same VM. 

‣ All communication must be done with messages. 

‣ messages are copied between processes



No shared state

‣ Why? 

‣ Background (telecom switches) with a large number of small and short lived 
processes 

‣ When a process dies there is no risk reclaiming the whole process 

‣ No other process can access the memory it used 

‣ Nothing happens if you send a message to a dead pid 

‣ The dead process can not reference the memory of another process 

‣ Leads to robustness



Keeping state in a process

‣ Real world computations need state 

‣ State is encoded in a process that reacts to messages 

‣ init state 

‣ wait for message 

‣ compute new state from message and existing state 

‣ loop 

!
!
!
!

‣ start the actor and send messages to it

start() -> actor(init_state()).!
!
actor(State) ->!
  actor(process_message(get_msg(), State)).



Managing Processes
‣ Three basic primitives are used to handle processes 

‣ Create process - returns pid (process id) 

!
‣ Send a message - returns Msg 

!
‣ Receive a message from the message queue (the process will wait if there is no 

message) - returns value of chosen expression

spawn(Function) or spawn(M, F, Args)

Pid ! Msg

receive 
Pattern1 -> Expr1; 
Pattern2 -> Expr2; 
... 

end



Simple Message Passing
‣ Note that you have to set up the actual protocol yourself 

‣ If you want a reply, a sent message should include a return address 

‣ This goes for the reply as well - the original sender might want to know who sent 
the reply 

‣ This might also apply to request identifiers so a more general request would 
contain both a return address and an identifier 

‣ Given a simple and light weight protocol you can build a more complicated 
protocol (with delivery guarantees) upon it, but not the other way round.



Selective receive
‣ Note that a receive will wait until it finds a message matching the pattern 

‣ Messages might not be processed in the order they come 

‣ This can be expensive since the message queue has to be searched

receive 
foo -> f(..) 

end, 
receive 
  bar -> g(..) 
end



Receiving messages

‣ A receive will wait until a message matching a specified pattern is in the 
queue. 

‣ Messages are processed in an order specified by the receives in the process 

‣ Messages are thus not necessarily processed in the order they arrive 

‣ The code 

‣ reports queue length when acting on a message 

‣ messages are processed in the sequence foo, bar, foo, bar, ..  

‣ Note use of binding pattern in receive 

‣ Why can’t we have the same variable in both receives

foobar() -> 
  F = fun(Msg) -> 
 {message_queue_len, L} = process_info(self(), message_queue_len), 
 io:format("Msg: ~p (~p)~n", [Msg, L]) 
  end, 
!
  receive M0=foo -> F(M0) end, 
  receive M1=bar -> F(M1) end, 
  foobar(). 



Example
start() -> server(0). 
!
server(Count) -> 
  NewCount = receive 
               {report, Pid} ->  
                 Pid ! Count, 
                 Count; 
               _Msg -> Count + 1 
        end, 
  server(NewCount). 
!
32> P = spawn(fun simple:start/0). 
<0.110.0> 
33> P!foo. 
foo 
34> P!foo. 
foo 
35> P!foo. 
foo 
36> P!{report, self()}. 
{report,<0.88.0>} 
37> receive M -> M end. 
3



Efficient computation through memoisation

‣ Consider a computationally intensive function 

‣ Fibonacci, Ackermann, .. 

‣ Instead of computing the value each time, one can remember the values and 
serve them when a new request comes 

‣ If we know the value, return it 

‣ Otherwise, compute it, remember it, return it 

‣ It’s actually a cache! 

‣ The cache (a mapping from argument(s) to value) is encoded in the state of a 
process



Efficient computation through memoisation
-module(ex5). 
!
-export([ fib/1, fibfun/0]). 
!
fib(0) -> 1; 
fib(1) -> 1; 
fib(N) -> fib(N-1) + fib(N-2). 
!
fibfun() -> 
  Cache = dict:new(), 
  Pid = spawn(fun() -> loop(Cache) end), 
  fun(N) -> 
      Pid ! {self(), N}, 
      receive 
        V -> V 
      end 
  end. 
!
loop(Cache) -> 
  receive 
    {Pid, N} -> 
      case dict:find(N, Cache) of 
        {ok, Value} -> 
          NewCache = Cache; 
        error -> 
          Value = fib(N), 
          NewCache = dict:store(N, Value, Cache) 
      end, 
      Pid ! Value, 
      loop(NewCache) 
  end.



Distribution made easy

‣ Distribute work load among a number of workers 

‣ Input 

‣ the work to be done, a queue of tasks 

‣ the workers that performs the work (pids) 

‣ What is specific for each problem? 

‣ How to get a chunk of work from the queue 

‣ How to combine results from a single worker with the result from the others



Distribution made easy

‣ We’re done when the queue is empty and we have no active workers. 

‣ We wait for a worker to return a result when the queue is empty or we have no 
passive workers 

‣ We activate a worker when the queue is non empty and we have passive workers. 

‣ Initial state is a queue of work, no active workers and a collection of passive 
workers.



Distribution made easy

sequential(L) -> lists:filter(fun is_prime/1, L).!
!
process_work([], [], _, State) -> State;!
process_work(Work, Active, Passive, State)!
  when Work =:= []; Passive =:= [] ->!
  receive {Worker, M} ->!
      process_work(Work, lists:delete(Worker, Active),!
                   [Worker | Passive], add_result(State, M))!
  end;!
process_work(Work, Active, [Worker | Passive], State) ->!
  {Chunk, Rest} = get_chunk(State, Work),!
  Worker ! {self(), Chunk},!
  process_work(Rest, [Worker | Active], Passive, State).!
!
worker() ->!
  receive {Pid, Work} ->!
      Pid ! {self(), sequential(Work)},!
      worker()!
  end.!



Linking processes
‣ Send a message (with Pid ! Message) returns the message. 

‣ This happens even if the process has died 

‣ No delivery receipt 

‣ if process_info(Pid) == undefined the process is not alive 

‣ querying the process status is impractical 

‣ A process will run until it 

‣ terminates normally 

‣ is killed by someone else 

‣ is killed by an accident 

‣ A system with several processes will not work  if one process ceases to exist 

‣ default is that process death is ignored - no one cares 

‣ The rest of system needs to know about the death of other processes 

‣ Possible actions 

‣ take down other processes 

‣ restart dead process 

‣ restart several other processes



‣ Processes can be tied together with links 

‣ Two (of several) ways to create links 

‣ link(Pid) - link current process with Pid 

‣ spawn_link(Fun)- create new process and link it with current process 

‣ Linking processes means linking their destiny 

‣ Links are bidirectional 

‣ Without additional considerations in place, a process P0 linked to P1 will 
terminate if P1 terminates (and vice versa) 

‣ This is (slightly) better since we’ll have no silent sending of messages to dead 
processes. 

‣ A process that dies/exits will send a signal to linked processes and they will react 
by dying as well.

Linking processes



Linking processes
failing() -> 
  receive 
    X -> 
      io:format("failing, msg: ~p~n", [X]), 
      X=elrang, 
      failing() 
    end.

124> f(P), P = spawn(fun() -> linking:failing() end). 
<0.300.0> 
125> P!foo. 
failing, msg: foo 
foo 
!
=ERROR REPORT==== 4-Nov-2012::09:57:41 === 
Error in process <0.300.0> with exit value: 
{{badmatch,elrang},[{linking,failing,0}]} 



Linking processes
parent() -> 
  Child = spawn_link(fun() -> failing() end), 
  receive 
    M -> 
      io:format("Parent, msg: ~p~n", [M]), 
      Child ! M, 
      parent() 
  end.

f(P), P = spawn(fun() -> linking:parent() end). 
<0.314.0> 
132> P!bar. 
Parent, msg: bar 
bar 
failing, msg: bar 
133>  
=ERROR REPORT==== 4-Nov-2012::10:03:17 === 
Error in process <0.315.0> with exit value: 
{{badmatch,elrang},[{linking,failing,0}]} 
!
P!hello. 
hello 
134> 



Linking processes
‣ Much better is to be made aware of a linked process being in trouble 

‣ Catch the signal, convert it to a message and act upon it. 

‣ This is the base for building robust systems that act upon failures

responsible_parent() -> 
  process_flag(trap_exit, true), 
  care_for(). 
!
care_for() -> 
  Child = spawn_link(fun() -> failing() end), 
  care_for(Child). 
!
care_for(Child) -> 
  receive 
    {'EXIT', Child, Why} -> 
     io:format("child died (reason: ~pn), restart it~n", [Why]), 
     care_for(); 
    M -> 
     io:format("Parent, msg: ~p~n", [M]), 
     Child ! M, 
     care_for(Child) 
  end.



Behaviours
‣ A behaviour in Erlang specifies the interface of a module 

‣ A module must implement the functions specified by the behaviour 

‣ It can implement and export more functions 

‣ A module that implements a behaviour can then be passed to a generic 
module expecting that behaviour 

‣ This can also rather easily be implemented using higher order functions



Behaviours
‣ The actual behaviour is specified by the function behaviour_info/1 

‣ It should return a list of tuples {functionname, arity} 

‣ The actual implementation making use of the implementation can be in the 
same module defining the behaviour or in another module. 

‣ There is no checking that the module supplied actually implements the 
behaviour - this is discovered at runtime. 

‣ Example: implement a generic module for caching the values of a (pure) function  
call.  Since the actual computation might take a long time, we want to avoid 
computing the function several times. 

‣ General idea: 

‣ Receive a “function call” 

‣ Check the cache if we already have computed the value 

‣ If so, return the value (no change in the cache) 

‣ If not, compute the value, add it to the cache and return the value



-module(cachefun). 
!
-export([init/1 , behaviour_info/1]). 
!
behaviour_info(callbacks) -> [{compute, 1}]; 
behaviour_info(_) -> undefined. 
!
init(Module) -> 
  Cache = dict:new(), 
  Pid = spawn(fun() -> loop(Cache, Module) end), 
  fun(X) -> 
      Pid ! {self(), X}, 
      receive V -> V end 
  end. 
!
loop(Cache, Module) -> 
  receive {Pid, Arg} -> 
 case dict:find(Arg, Cache) of 
   {ok, Value} -> 
     NewCache = Cache; 
   error -> 
     Value = Module:compute(Arg), 
     NewCache = dict:store(Arg, Value, Cache) 
 end, 
      Pid ! Value, 
      loop(NewCache, Module) 
  end.



-module(fibcache). 
!
-behaviour(cachefun). 
!
-export([compute/1, fibfun/0]). 
!
fibfun() -> cachefun:init(?MODULE). 
!
compute(N) -> fib(N). 
!
fib(0) -> 0; 
fib(1) -> 1; 
fib(N) -> fib(N-1) + fib(N-2).

Behaviours
‣ fibfun() returns a function 

‣ ?MODULE is a macro returning the module name

3> F= fibcache:fibfun(). 
#Fun<cachefun.1.45378360> 
4> F(40). 



Standard behaviours
‣ gen_server - implements a generic server, supporting 

‣ request/response (synchronous calls) 

‣ commands (requests without response, or asynchronous calls) 

‣ code upgrade 

‣ You implement the specific details for handling state and responding to the 
calls, the generic server takes care of the rest 

‣ supervisor - implements generic functions for supervising processes, i.e., 
how the different processes should react when process die etc. 

‣ gen_fsm - finite state machine; you code the states, events and transistions and 
the generic machine takes care of the rest.



Code loading
‣ One core feature of Erlang is the ability to load new code during runtime 

‣ To cater for scenarios where you “long” running processes Erlang actually 
supports holding two versions (current and old) of a module at a given time. 

‣ When a new version is loaded the old is thrown away, the (previously) current 
becomes the old and newly loaded becomes the current. 

‣ This works for external calls, i.e., a module calls another using a module prefix. 

‣ For an internal call a name always refers to the code version in the module 

‣ a process holding a reference to an old module might fail due to the code 
being unloaded and thrown away 

‣ This is “solved” by always calling with the module prefix, but it also means that 
the function has to be exported. 

‣ the current (newest) version is always called

-module(server). 
!
-export([loop/1]). 
!
loop(State) -> 
  <wait for messages and compute new state>, 
  server:loop(NewState).



Binaries
‣ The telecom world is full of protocols, often at a very low level, i.e., 3 bits for 

this, followed by 7 bits for that etc. 

‣ Erlang makes it very easy to manipulate bit strings, treating them in a very nice 
abstract manner. 

‣ External syntax <<..>> where .. is a sequence of bit field specifiers 

‣ A binary is a datatype in the same way as numbers, terms, lists etc 

‣ integers must be converted to and from binaries 

‣ Instead of masking and shifting  one can extract bitfields through matching 

‣ Similarly, one can construct a binary the same way.

decode_parts(<<T:1, F:3, U:2, S:2>>) -> 
  {T==1, F, U, S}. 
!
encode_parts({Flag, F, U, S}) -> 
  T = if Flag -> 1; 
         true -> 0 
      end, 
  <<T:1, F:3, U:2, S:2>>. 



Binaries
‣ Decoding an IP (V4) datagram 

ip_datagram(Dgram) -> 
  Size = byte_size(Dgram), 
  case Dgram of 
    <<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,  
      ID:16, Flgs:3, FragOff:13, 
      TTL:8, Proto:8, HdrChkSum:16, 
      SrcIP:32, 
      DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<Size -> 
      OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN), 
      <<Opts:OptsLen/binary,Data/binary>> = RestDgram, 
      ... 
  end.



Storage and Persistence
‣ Any real life application will have the need to handle larger amounts of data 

‣ in memory (with pragmatic access) 

‣ persistently (still there after a restart) 

‣ efficient access (constant) 

‣ distributed 

‣ Erlang provide several options 

‣ process dictionary - “global storage” for a process (limited use) 

‣ ets - erlang term storage, table based, in memory, belongs to a process 

‣ dets - disk based ets, persistent (similar to ets in operations, but slower) 

‣ mnesia - database built on which support transactions and distribution



Erlang Summary
‣ Untyped language with a functional core. 

‣ Evolved rather than designed. 

‣ Designed for fault tolerance, distribution and robustness. 

‣ Excellent handling of processes. 

‣ Not an excellent language for abstraction and “normal” software engineering. 

‣ Not so well designed in terms of syntax and some semantics. 

‣ Some rather horrible constructions. 

!
‣ Uncovered topics 

‣ most of the standard libraries (otp) 

‣ tools surrounding development and releases 

‣ behaviours, generic servers 

‣ lots of details



More about Erlang

‣ Covered the basics of Erlang and distributed and concurrent programming 

‣ OTP, Supervisors, behaviours, gen_server, rebar, eunit, proper, dialyzer, standard 
libraries, persistence in various forms, bit syntax, code loading, actual side effects 
.. 

‣ Good book 

‣ Erlang and OTP in Action by Martin Logan, Eric Meritt, Richard Carlsson.


