State diagrams, interleaving,
atomic actions, critical sections

K.V.S. Prasad
Dept of Computer Science

Chalmers University
23 January 2015



Plan for today

Example: Sharing a meal, or a bank a/c
State diagrams

Concurrency models — (a)synchrony, time, ...
Critical sections

— Atomic actions

History

Chaps from Ben-Ari (for 21, 23, and 26 Jan)
-1

— 2.1to 2.5

— 3.1to 3.5
— 6.1t06.3



Sharing a meal

e proctype P {grab knife; grab fork; eat}
proctype Q {grab fork; grab knife; eat}

Then {run P; run P} will result in both eating one
after the other

But {run P; run Q} might result in P eating after Q or
the other way, or in deadlock.



Shared bank account

e proctype W {loc:= bal; loc--; out 1; bal:=loc}
— bal is shared global balance
— loc is local register
— out is payout

* Then {run W; run W} could result in both

succeeding in their withdrawals, but with the
account being debited just once

— locl:=bal; loc2:=bal; locl--; loc2--; outl 1; out2 1;
bal:=locl; bal:=loc2



Interleaving

e Each process executes a sequence of atomic
commands (usually called “statements”,
though | don’t like that term).

* Each process has its own control pointer, see
2.1 of Ben-Ari

* For 2.2, see what interleavings are impossible



State diagrams

* |Inslides 2.4 and 2.5, note that the state
describes variable values before the current
command is executed.

* |n 2.6, note that the “statement” part is a pair,
one statement for each of the processes

 Not all thinkable states are reachable from the
start state



Scenarios

* A scenario is a sequence of states
— A path through the state diagram
— See 2.7 for an example

— Each row is a state
* The statement to be executed is in bold



The counting example

e See algorithm 2.9 on slide 2.24
— What are the min and max possible values of n?

* How to say it in C-BACI, Ada and Java
—2.27t0 2.32



Atomic statements

* The thing that happens without interruption
— Can be implemented as high priority
e Compare algorithms 2.3 and 2.4
e Slides 2.12 to0 2.17
— 2.3 can guarantee n=2 at the end
— 2.4 cannot
* hardware folk say there is a “race condition”
* We must say what the atomic statements are
— In the book, assignments and boolean conditions
— How to implement these as atomic?



The Critical Section Problem

e Attempts to solve them

— without special hardware instructions
* Assuming load and store are atomic

— Designing suitable hardware instructions



Requirements and Assumptions

* Correctness requirements
— Both p and g cannot be in their CS at once (mutex)

— If p and g both wish to enter their CS, one must
succeed eventually (no deadlock)

— If p tries to enter its CS, it will succeed eventually
(no starvation)

* Assumptions

— A process in its CS will leave eventually (progress)
— Progress in non-CS optional



Comments

* Pre- and post-protocols

— These don’t share local or global vars with the rest
of the program

* The CS models access to data shared between
p and g



First try (alg 3.2, slide 3.3)

The full state diagram shows only 16 states
are reachable, out of 32

These exclude states (p3,93,*) so mutex is OK.
The abbreviated program reduces state space
if p1is stuck in NCS with turn=1, q starves

Deadlock free in the sense that p can enter CS

Error: p and q both set and test “turn”; if one
dies the other is stuck



