
A Quick Introduction to C��

Tom Anderson

�If programming in Pascal is like being put in a straightjacket� then program�
ming in C is like playing with knives� and programming in C�� is like juggling
chainsaws��

Anonymous�

� Introduction

This note introduces some simple C�� concepts and outlines a subset of C�� that is easier
to learn and use than the full language� Although we originally wrote this note for explaining
the C�� used in the Nachos project� I believe it is useful to anyone learning C��� I assume
that you are already somewhat familiar with C concepts like procedures� for loops� and
pointers� these are pretty easy to pick up from reading Kernighan and Ritchie�s �The C
Programming Language��

I should admit up front that I am quite opinionated about C��� if that isn�t obvious
already� I know several C�� purists 	an oxymoron perhaps
� who violently disagree with
some of the prescriptions contained here� most of the objections are of the form� �How could
you have possibly left out feature X
� However� I�ve found from teaching C�� to nearly
� undergrads over the past several years that the subset of C�� described here is pretty
easy to learn� taking only a day or so for most students to get started�

The basic premise of this note is that while object�oriented programming is a useful way
to simplify programs� C�� is a wildly over�complicated language� with a host of features
that only very� very rarely �nd a legitimate use� It�s not too far o� the mark to say that
C�� includes every programming language feature ever imagined� and more� The natural
tendency when faced with a new language feature is to try to use it� but in C�� this
approach leads to disaster�

Thus� we need to carefully distinguish between 	i� those concepts that are fundamental
	e�g�� classes� member functions� constructors� � ones that everyone should know and use�
	ii� those that are sometimes but rarely useful 	e�g�� single inheritance� templates� � ones
that beginner programmers should be able to recognize 	in case they run across them� but
avoid using in their own programs� at least for a while� and 	iii� those that are just a bad idea
and should be avoided like the plague 	e�g�� multiple inheritance� exceptions� overloading�
references� etc��

Of course� all the items in this last category have their proponents� and I will admit that�
like the hated goto� it is possible to construct cases when the program would be simpler

This article is based on an earlier version written by Wayne Christopher�

�

using a goto or multiple inheritance� However� it is my belief that most programmers will
never encounter such cases� and even if you do� you will be much more likely to misuse the
feature than properly apply it� For example� I seriously doubt an undergraduate would need
any of the features listed under 	iii� for any course project 	at least at Berkeley this is true��
And if you �nd yourself wanting to use a feature like multiple inheritance� then� my advice is
to fully implement your program both with and without the feature� and choose whichever
is simpler� Sure� this takes more e�ort� but pretty soon you�ll know from experience when a
feature is useful and when it isn�t� and you�ll be able to skip the dual implementation�

A really good way to learn a language is to read clear programs in that language� I have
tried to make the Nachos code as readable as possible� it is written in the subset of C��
described in this note� It is a good idea to look over the �rst assignment as you read this
introduction� Of course� your TA�s will answer any questions you may have�

You should not need a book on C�� to do the Nachos assignments� but if you are curious�
there is a large selection of C�� books at Cody�s and other technical bookstores� 	My wife
quips that C�� was invented to make researchers at Bell Labs rich from writing �How to
Program in C��� books�� Most new software development these days is being done in
C��� so it is a pretty good bet you�ll run across it in the future� I use Stroustrup�s �The
C�� Programming Language� as a reference manual� although other books may be more
readable� I would also recommend Scott Meyer�s �E�ective C��� for people just beginning
to learn the language� and Coplien�s �Advanced C��� once you�ve been programming in
C�� for a couple years and are familiar with the language basics� Also� C�� is continually
evolving� so be careful to buy books that describe the latest version 	currently ��� I think���

� C in C��

To a large extent� C�� is a superset of C� and most carefully written ANSI C will compile
as C��� There are a few major caveats though�

�� All functions must be declared before they are used� rather than defaulting to type
int�

�� All function declarations and de�nition headers must use new�style declarations� e�g��

extern int foo�int a� char� b��

The form extern int foo��� means that foo takes no arguments� rather than argu�
ments of an unspeci�ed type and number� In fact� some advise using a C�� compiler
even on normal C code� because it will catch errors like misused functions that a normal
C compiler will let slide�

�� If you need to link C object �les together with C��� when you declare the C functions
for the C�� �les� they must be done like this�

�

extern �C� int foo�int a� char� b��

Otherwise the C�� compiler will alter the name in a strange manner�

�� There are a number of new keywords� which you may not use as identi�ers � some
common ones are new� delete� const� and class�

� Basic Concepts

Before giving examples of C�� features� I will �rst go over some of the basic concepts of
object�oriented languages� If this discussion at �rst seems a bit obscure� it will become
clearer when we get to some examples�

�� Classes and objects� A class is similar to a C structure� except that the de�nition
of the data structure� and all of the functions that operate on the data structure are
grouped together in one place� An object is an instance of a class 	an instance of the
data structure�� objects share the same functions with other objects of the same class�
but each object 	each instance� has its own copy of the data structure� A class thus
de�nes two aspects of the objects� the data they contain� and the behavior they have�

�� Member functions� These are functions which are considered part of the object and
are declared in the class de�nition� They are often referred to as methods of the class�
In addition to member functions� a class�s behavior is also de�ned by�

	a� What to do when you create a new object 	the constructor for that object� � in
other words� initialize the object�s data�

	b� What to do when you delete an object 	the destructor for that object��

�� Private vs� public members� A public member of a class is one that can be read
or written by anybody� in the case of a data member� or called by anybody� in the
case of a member function� A private member can only be read� written� or called by
a member function of that class�

Classes are used for two main reasons� 	�� it makes it much easier to organize your
programs if you can group together data with the functions that manipulate that data� and
	�� the use of private members makes it possible to do information hiding� so that you can
be more con�dent about the way information �ows in your programs�

��� Classes

C�� classes are similar to C structures in many ways� In fact� a C�� struct is really a
class that has only public data members� In the following explanation of how classes work�
we will use a stack class as an example�

�

�� Member functions� Here is a 	partial� example of a class with a member function
and some data members�

class Stack �

public	

void Push�int value��

 Push an integer� checking for overflow�

int top�

 Index of the top of the stack�

int stack����

 The elements of the stack�

��

void

Stack		Push�int value� �

ASSERT�top � ���

 stack should never overflow

stack�top��� � value�

�

This class has two data members� top and stack� and one member function� Push�
The notation class��function denotes the function member of the class class� 	In the
style we use� most function names are capitalized�� The function is de�ned beneath it�

As an aside� note that we use a call to ASSERT to check that the stack hasn�t over�owed�
ASSERT drops into the debugger if the condition is false� It is an extremely good
idea for you to use ASSERT statements liberally throughout your code to document
assumptions made by your implementation� Better to catch errors automatically via
ASSERTs than to let them go by and have your program overwrite random locations�

In actual usage� the de�nition of class Stack would typically go in the �le stack�h
and the de�nitions of the member functions� like Stack		Push� would go in the �le
stack�cc�

If we have a pointer to a Stack object called s� we can access the top element as
s��top� just as in C� However� in C�� we can also call the member function using the
following syntax�

s��Push����

Of course� as in C� s must point to a valid Stack object�

Inside a member function� one may refer to the members of the class by their names
alone� In other words� the class de�nition creates a scope that includes the member
	function and data� de�nitions�

Note that if you are inside a member function� you can get a pointer to the object you
were called on by using the variable this� If you want to call another member function
on the same object� you do not need to use the this pointer� however� Let�s extend
the Stack example to illustrate this by adding a Full�� function�

�

class Stack �

public	

void Push�int value��

 Push an integer� checking for overflow�

bool Full���

 Returns TRUE if the stack is full� FALSE otherwise�

int top�

 Index of the lowest unused position�

int stack����

 A pointer to an array that holds the contents�

��

�

bool

Stack		Full�� �

return �top �� ���

�

Now we can rewrite Push this way�

void

Stack		Push�int value� �

ASSERT��Full����

stack�top��� � value�

�

We could have also written the ASSERT�

ASSERT���this��Full����

but in a member function� the this�� is implicit�

The purpose of member functions is to encapsulate the functionality of a type of object
along with the data that the object contains� A member function does not take up
space in an object of the class�

�� Private members� One can declare some members of a class to be private� which are
hidden to all but the member functions of that class� and some to be public� which are
visible and accessible to everybody� Both data and function members can be either
public or private�

In our stack example� note that once we have the Full�� function� we really don�t
need to look at the top or stack members outside of the class � in fact� we�d rather
that users of the Stack abstraction not know about its internal implementation� in case
we change it� Thus we can rewrite the class as follows�

class Stack �

public	

void Push�int value��

 Push an integer� checking for overflow�

bool Full���

 Returns TRUE if the stack is full� FALSE otherwise�

private	

int top�

 Index of the top of the stack�

int stack����

 The elements of the stack�

��

�

Before� given a pointer to a Stack object� say s� any part of the program could access
s��top� in potentially bad ways� Now� since the top member is private� only a member
function� such as Full��� can access it� If any other part of the program attempts to
use s��top the compiler will report an error�

You can have alternating public	 and private	 sections in a class� Before you specify
either of these� class members are private� thus the above example could have been
written�

class Stack �

int top�

 Index of the top of the stack�

int stack����

 The elements of the stack�

public	

void Push�int value��

 Push an integer� checking for overflow�

bool Full���

 Returns TRUE if the stack is full� FALSE otherwise�

��

Which form you prefer is a matter of style� but it�s usually best to be explicit� so that
it is obvious what is intended� In Nachos� we make everything explicit�

What is not a matter of style� all data members of a class should be private� All
operations on data should be via that class� member functions� Keeping data private
adds to the modularity of the system� since you can rede�ne how the data members
are stored without changing how you access them�

�� Constructors and the operator new� In C� in order to create a new object of type
Stack� one might write�

struct Stack �s � �struct Stack �� malloc�sizeof �struct Stack���

InitStack�s� ���

The InitStack�� function might take the second argument as the size of the stack to
create� and use malloc�� again to get an array of �� integers�

The way this is done in C�� is as follows�

Stack �s � new Stack����

The new function takes the place of malloc��� To specify how the object should be
initialized� one declares a constructor function as a member of the class� with the name
of the function being the same as the class name�

�

class Stack �

public	

Stack�int sz��

 Constructor	 initialize variables� allocate space�

void Push�int value��

 Push an integer� checking for overflow�

bool Full���

 Returns TRUE if the stack is full� FALSE otherwise�

private	

int size�

 The maximum capacity of the stack�

int top�

 Index of the lowest unused position�

int� stack�

 A pointer to an array that holds the contents�

��

Stack		Stack�int sz� �

size � sz�

top � ��

stack � new int�size��

 Let�s get an array of integers�

�

There are a few things going on here� so we will describe them one at a time�

The new operator automatically creates 	i�e� allocates� the object and then calls the
constructor function for the new object� This same sequence happens even if� for
instance� you declare an object as an automatic variable inside a function or block
� the compiler allocates space for the object on the stack� and calls the constructor
function on it�

In this example� we create two stacks of di�erent sizes� one by declaring it as an
automatic variable� and one by using new�

void

test�� �

Stack s����

Stack� s� � new Stack�����

�

Note there are two ways of providing arguments to constructors� with new� you put
the argument list after the class name� and with automatic or global variables� you put
them after the variable name�

It is crucial that you always de�ne a constructor for every class you de�ne� and that
the constructor initialize every data member of the class� If you don�t de�ne your
own constructor� the compiler will automatically de�ne one for you� and believe me�
it won�t do what you want 	�the unhelpful compiler��� The data members will be
initialized to random� unrepeatable values� and while your program may work anyway�
it might not the next time you recompile 	or vice versa���

�

As with normal C variables� variables declared inside a function are deallocated auto�
matically when the function returns� for example� the s object is deallocated when
test returns� Data allocated with new 	such as s�� is stored on the heap� however�
and remains after the function returns� heap data must be explicitly disposed of using
delete� described below�

The new operator can also be used to allocate arrays� illustrated above in allocating
an array of ints� of dimension size�

stack � new int�size��

Note that you can use new and delete 	described below� with built�in types like int
and char as well as with class objects like Stack�

�� Destructors and the operator delete� Just as new is the replacement for malloc���
the replacement for free�� is delete� To get rid of the Stack object we allocated above
with new� one can do�

delete s��

This will deallocate the object� but �rst it will call the destructor for the Stack class�
if there is one� This destructor is a member function of Stack called �Stack���

class Stack �

public	

Stack�int sz��

 Constructor	 initialize variables� allocate space�

�Stack���

 Destructor	 deallocate space allocated above�

void Push�int value��

 Push an integer� checking for overflow�

bool Full���

 Returns TRUE if the stack is full� FALSE otherwise�

private	

int size�

 The maximum capacity of the stack�

int top�

 Index of the lowest unused position�

int� stack�

 A pointer to an array that holds the contents�

��

Stack		�Stack�� �

delete �� stack�

 delete an array of integers

�

The destructor has the job of deallocating the data the constructor allocated� Many
classes won�t need destructors� and some will use them to close �les and otherwise
clean up after themselves�

�

The destructor for an object is called when the object is deallocated� If the object
was created with new� then you must call delete on the object� or else the object will
continue to occupy space until the program is over � this is called �a memory leak��
Memory leaks are bad things � although virtual memory is supposed to be unlimited�
you can in fact run out of it � and so you should be careful to always delete what
you allocate� Of course� it is even worse to call delete too early � delete calls the
destructor and puts the space back on the heap for later re�use� If you are still using
the object� you will get random and non�repeatable results that will be very di�cult
to debug� In my experience� using data that has already been deleted is major source
of hard�to�locate bugs in student 	and professional� programs� so hey� be careful out
there�

If the object is an automatic� allocated on the execution stack of a function� the
destructor will be called and the space deallocated when the function returns� in the
test�� example above� s will be deallocated when test�� returns� without you having
to do anything�

In Nachos� we always explicitly allocate and deallocate objects with new and delete�
to make it clear when the constructor and destructor is being called� For example�
if an object contains another object as a member variable� we use new to explicitly
allocated and initialize the member variable� instead of implicitly allocating it as part
of the containing object� C�� has strange� non�intuitive rules for the order in which
the constructors and destructors are called when you implicitly allocate and deallocate
objects� In practice� although simpler� explicit allocation is slightly slower and it makes
it more likely that you will forget to deallocate an object 	a bad thing��� and so some
would disagree with this approach�

When you deallocate an array� you have to tell the compiler that you are deallocating
an array� as opposed to a single element in the array� Hence to delete the array of
integers in Stack		�Stack�

delete �� stack�

��� Other Basic C�� Features

Here are a few other C�� features that are useful to know�

�� When you de�ne a class Stack� the name Stack becomes usable as a type name as
if created with typedef� The same is true for enums�

�� You can de�ne functions inside of a class de�nition� whereupon they become inline

functions� which are expanded in the body of the function where they are used� The
rule of thumb to follow is to only consider inlining one�line functions� and even then
do so rarely�

As an example� we could make the Full routine an inline�

�

class Stack �

���

bool Full�� � return �top �� size�� ��

���

��

There are two motivations for inlines� convenience and performance� If overused�
inlines can make your code more confusing� because the implementation for an object
is no longer in one place� but spread between the �h and �c �les� Inlines can sometimes
speed up your code 	by avoiding the overhead of a procedure call�� but that shouldn�t
be your principal concern as a student 	rather� at least to begin with� you should be
most concerned with writing code that is simple and bug free�� Not to mention that
inlining sometimes slows down a program� since the object code for the function is
duplicated wherever the function is called� potentially hurting cache performance�

�� Inside a function body� you can declare some variables� execute some statements� and
then declare more variables� This can make code a lot more readable� In fact� you can
even write things like�

for �int i � �� i � �� i��� �

Depending on your compiler� however� the variable i may still visible after the end of
the for loop� however� which is not what one might expect or desire�

�� Comments can begin with the characters

 and extend to the end of the line� These
are usually more handy than the
� �
 style of comments�

�� C�� provides some new opportunities to use the const keyword from ANSI C� The
basic idea of const is to provide extra information to the compiler about how a variable
or function is used� to allow it to �ag an error if it is being used improperly� You should
always look for ways to get the compiler to catch bugs for you� After all� which takes
less time
 Fixing a compiler��agged error� or chasing down the same bug using gdb

For example� you can declare that a member function only reads the member data�
and never modi�es the object�

class Stack �

���

bool Full�� const�

 Full�� never modifies member data

���

��

As in C� you can use const to declare that a variable is never modi�ed�

��

const int InitialHashTableSize � ��

This is much better than using �define for constants� since the above is type�checked�

�� Input�output in C�� can be done with the �� and �� operators and the objects cin
and cout� For example� to write to stdout�

cout �� �Hello world� This is section � �� � �� ����

This is equivalent to the normal C code

fprintf�stdout� �Hello world� This is section �d��n�� ���

except that the C�� version is type�safe� with printf� the compiler won�t complain if
you try to print a �oating point number as an integer� In fact� you can use traditional
printf in a C�� program� but you will get bizarre behavior if you try to use both
printf and �� on the same stream� Reading from stdin works the same way as writing
to stdout� except using the shift right operator instead of shift left� In order to read
two integers from stdin�

int field� field��

cin �� field �� field��

 equivalent to fscanf�stdin� ��d �d�� field� field���

 note that field and field� are implicitly modified

In fact� cin and cout are implemented as normal C�� objects� using operator over�
loading and reference parameters� but 	fortunately�� you don�t need to understand
either of those to be able to do I�O in C���

� Advanced Concepts in C��� Dangerous but Occa�

sionally Useful

There are a few C�� features� namely 	single� inheritance and templates� which are easily
abused� but can dramatically simplify an implementation if used properly� I describe the
basic idea behind these �dangerous but useful� features here� in case you run across them�
Feel free to skip this section � it�s long� complex� and you can understand ��� of the code
in Nachos without reading this section�

Up to this point� there really hasn�t been any fundamental di�erence between program�
ming in C and in C��� In fact� most experienced C programmers organize their func�
tions into modules that relate to a single data structure 	a �class��� and often even use

��

a naming convention which mimics C��� for example� naming routines StackFull�� and
StackPush��� However� the features I�m about to describe do require a paradigm shift �
there is no simple translation from them into a normal C program� The bene�t will be that�
in some circumstances� you will be able to write generic code that works with multiple kinds
of objects�

Nevertheless� I would advise a beginning C�� programmer against trying to use these
features� because you will almost certainly misuse them� It�s possible 	even easy�� to write
completely inscrutable code using inheritance and�or templates� Although you might �nd it
amusing to write code that is impossible for your graders to understand� I assure you they
won�t �nd it amusing at all� and will return the favor when they assign grades� In industry�
a high premium is placed on keeping code simple and readable� It�s easy to write new code�
but the real cost comes when you try to keep it working� even as you add new features to it�

Nachos contains a few examples of the correct use of inheritance and templates� but
realize that Nachos does not use them everywhere� In fact� if you get confused by this
section� don�t worry� you don�t need to use any of these features in order to do the Nachos
assignments� I omit a whole bunch of details� if you �nd yourself making widespread use
of inheritance or templates� you should consult a C�� reference manual for the real scoop�
This is meant to be just enough to get you started� and to help you identify when it would
be appropriate to use these features and thus learn more about them�

��� Inheritance

Inheritance captures the idea that certain classes of objects are related to each other in useful
ways� For example� lists and sorted lists have quite similar behavior � they both allow the
user to insert� delete� and �nd elements that are on the list� There are two bene�ts to using
inheritance�

�� You can write generic code that doesn�t care exactly which kind of object it is manip�
ulating� For example� inheritance is widely used in windowing systems� Everything on
the screen 	windows� scroll bars� titles� icons� is its own object� but they all share a set
of member functions in common� such as a routine Repaint to redraw the object onto
the screen� This way� the code to repaint the entire screen can simply call the Repaint
function on every object on the screen� The code that calls Repaint doesn�t need to
know which kinds of objects are on the screen� as long as each implements Repaint�

�� You can share pieces of an implementation between two objects� For example� if
you were to implement both lists and sorted lists in C� you�d probably �nd yourself
repeating code in both places � in fact� you might be really tempted to only implement
sorted lists� so that you only had to debug one version� Inheritance provides a way
to re�use code between nearly similar classes� For example� given an implementation
of a list class� in C�� you can implement sorted lists by replacing the insert member
function � the other functions� delete� isFull� print� all remain the same�

��

����� Shared Behavior

Let me use our Stack example to illustrate the �rst of these� Our Stack implementation above
could have been implemented with linked lists� instead of an array� Any code using a Stack
shouldn�t care which implementation is being used� except that the linked list implementation
can�t over�ow� 	In fact� we could also change the array implementation to handle over�ow
by automatically resizing the array as items are pushed on the stack��

To allow the two implementations to coexist� we �rst de�ne an abstract Stack� containing
just the public member functions� but no data�

class Stack �

public	

Stack���

virtual �Stack���

 deallocate the stack

virtual void Push�int value� � ��

 Push an integer� checking for overflow�

virtual bool Full�� � ��

 Is the stack is full!

��

 For g��� need these even though no data to initialize�

Stack		Stack ��

Stack		�Stack�� ��

The Stack de�nition is called a base class or sometimes a superclass� We can then de�ne
two di�erent derived classes� sometimes called subclasses which inherit behavior from the
base class� 	Of course� inheritance is recursive � a derived class can in turn be a base class
for yet another derived class� and so on�� Note that I have prepended the functions in the
base class is prepended with the keyword virtual� to signify that they can be rede�ned
by each of the two derived classes� The virtual functions are initialized to zero� to tell the
compiler that those functions must be de�ned by the derived classes�

Here�s how we could declare the array�based and list�based implementations of Stack�
The syntax 	 public Stack signi�es that both ArrayStack and ListStack are kinds of
Stacks� and share the same behavior as the base class�

class ArrayStack 	 public Stack �

 the same as in Section �

public	

ArrayStack�int sz��

 Constructor	 initialize variables� allocate space�

�ArrayStack���

 Destructor	 deallocate space allocated above�

void Push�int value��

 Push an integer� checking for overflow�

bool Full���

 Returns TRUE if the stack is full� FALSE otherwise�

private	

int size�

 The maximum capacity of the stack�

int top�

 Index of the lowest unused position�

��

int �stack�

 A pointer to an array that holds the contents�

��

class ListStack 	 public Stack �

public	

ListStack���

�ListStack���

void Push�int value��

bool Full���

private	

List �list�

 list of items pushed on the stack

��

ListStack		ListStack�� �

list � new List�

�

ListStack		�ListStack�� �

delete list�

�

��

void ListStack		Push�int value� �

list��Prepend�value��

�

bool ListStack		Full�� �

return FALSE�

 this stack never overflows�

�

The neat concept here is that I can assign pointers to instances of ListStack or ArrayStack
to a variable of type Stack� and then use them as if they were of the base type�

Stack �s � new ListStack�

Stack �s� � new ArrayStack����

if ��stack��Full���

s��Push�"��

if ��s���Full���

s���Push�#��

delete s�

delete s��

The compiler automatically invokes ListStack operations for s� and ArrayStack op�
erations for s�� this is done by creating a procedure table for each object� where derived
objects override the default entries in the table de�ned by the base class� To the code above�
it invokes the operations Full� Push� and delete by indirection through the procedure table�
so that the code doesn�t need to know which kind of object it is�

In this example� since I never create an instance of the abstract class Stack� I do not need
to implement its functions� This might seem a bit strange� but remember that the derived
classes are the various implementations of Stack� and Stack serves only to re�ect the shared
behavior between the di�erent implementations�

Also note that the destructor for Stack is a virtual function but the constructor is
not� Clearly� when I create an object� I have to know which kind of object it is� whether
ArrayStack or ListStack� The compiler makes sure that no one creates an instance of the
abstract Stack by mistake � you cannot instantiate any class whose virtual functions are
not completely de�ned 	in other words� if any of its functions are set to zero in the class
de�nition��

But when I deallocate an object� I may no longer know its exact type� In the above code�
I want to call the destructor for the derived object� even though the code only knows that I
am deleting an object of class Stack� If the destructor were not virtual� then the compiler
would invoke Stack�s destructor� which is not at all what I want� This is an easy mistake to
make 	I made it in the �rst draft of this article�� � if you don�t de�ne a destructor for the
abstract class� the compiler will de�ne one for you implicitly 	and by the way� it won�t be

��

virtual� since you have a really unhelpful compiler�� The result for the above code would be
a memory leak� and who knows how you would �gure that out�

����� Shared Implementation

What about sharing code� the other reason for inheritance
 In C��� it is possible to use
member functions of a base class in its derived class� 	You can also share data between a
base class and derived classes� but this is a bad idea for reasons I�ll discuss later��

Suppose that I wanted to add a new member function� NumberPushed��� to both imple�
mentations of Stack� The ArrayStack class already keeps count of the number of items on
the stack� so I could duplicate that code in ListStack� Ideally� I�d like to be able to use the
same code in both places� With inheritance� we can move the counter into the Stack class�
and then invoke the base class operations from the derived class to update the counter�

class Stack �

public	

virtual �Stack���

 deallocate data

virtual void Push�int value��

 Push an integer� checking for overflow�

virtual bool Full�� � ��

 return TRUE if full

int NumPushed���

 how many are currently on the stack!

protected	

Stack���

 initialize data

private	

int numPushed�

��

Stack		Stack�� �

numPushed � ��

�

void Stack		Push�int value� �

numPushed���

�

int Stack		NumPushed�� �

return numPushed�

�

We can then modify both ArrayStack and ListStack to make use the new behavior of
Stack� I�ll only list one of them here�

class ArrayStack 	 public Stack �

public	

��

ArrayStack�int sz��

�ArrayStack���

void Push�int value��

bool Full���

private	

int size�

 The maximum capacity of the stack�

int �stack�

 A pointer to an array that holds the contents�

��

ArrayStack		ArrayStack�int sz� 	 Stack�� �

size � sz�

stack � new int�size��

 Let�s get an array of integers�

�

void

ArrayStack		Push�int value� �

ASSERT��Full����

stack�NumPushed��� � value�

Stack		Push���

 invoke base class to increment numPushed

�

There are a few things to note�

�� The constructor for ArrayStack needs to invoke the constructor for Stack� in order
to initialize numPushed� It does that by adding 	 Stack�� to the �rst line in the
constructor�

ArrayStack		ArrayStack�int sz� 	 Stack��

The same thing applies to destructors� There are special rules for which get called �rst
� the constructor�destructor for the base class or the constructor�destructor for the
derived class� All I should say is� it�s a bad idea to rely on whatever the rule is � more
generally� it is a bad idea to write code which requires the reader to consult a manual
to tell whether or not the code works�

�� I introduced a new keyword� protected� in the new de�nition of Stack� For a base
class� protected signi�es that those member data and functions are accessible to
classes derived 	recursively� from this class� but inaccessible to other classes� In other
words� protected data is public to derived classes� and private to everyone else� For
example� we need Stack�s constructor to be callable by ArrayStack and ListStack�
but we don�t want anyone else to create instances of Stack� Hence� we make Stack�s
constructor a protected function� In this case� this is not strictly necessary since the
compiler will complain if anyone tries to create an instance of Stack because Stack still

��

has an unde�ned virtual functions� Push� By de�ning Stack		Stack as protected�
you are safe even if someone comes along later and de�nes Stack		Push�

Note however that I made Stack�s data member private� not protected� Although
there is some debate on this point� as a rule of thumb you should never allow one
class to see directly access the data in another� even among classes related by inher�
itance� Otherwise� if you ever change the implementation of the base class� you will
have to examine and change all the implementations of the derived classes� violating
modularity�

�� The interface for a derived class automatically includes all functions de�ned for its base
class� without having to explicitly list them in the derived class� Although we didn�t
de�ne NumPushed�� in ArrayStack� we can still call it for those objects�

ArrayStack �s � new ArrayStack����

ASSERT�s��NumPushed�� �� ���

 should be initialized to �

�� Conversely� even though we have de�ned a routine Stack		Push��� because it is
declared as virtual� if we invoke Push�� on an ArrayStack object� we will get
ArrayStack�s version of Push�

Stack �s � new ArrayStack����

if ��s��Full���

 ArrayStack		Full

s��Push�"��

 ArrayStack		Push

�� Stack		NumPushed�� is not virtual� That means that it cannot be re�de�ned by
Stack�s derived classes� Some people believe that you should mark all functions in a
base class as virtual� that way� if you later want to implement a derived class that
rede�nes a function� you don�t have to modify the base class to do so�

�� Member functions in a derived class can explicitly invoke public or protected functions
in the base class� by the full name of the function� Base		Function��� as in�

void ArrayStack		Push�int value�

�

���

Stack		Push���

 invoke base class to increment numPushed

�

Of course� if we just called Push�� here 	without prepending Stack		� the compiler
would think we were referring to ArrayStack�s Push��� and so that would recurse�
which is not exactly what we had in mind here�

��

Whew� Inheritance in C�� involves lots and lots of details� But it�s real downside is
that it tends to spread implementation details across multiple �les � if you have a deep
inheritance tree� it can take some serious digging to �gure out what code actually executes
when a member function is invoked�

So the question to ask yourself before using inheritance is� what�s your goal
 Is it to
write your programs with the fewest number of characters possible
 If so� inheritance is
really useful� but so is changing all of your function and variable names to be one letter long
� �a�� �b�� �c� � and once you run out of lower case ones� start using upper case� then two
character variable names� �XX XY XZ Ya ���� 	I�m joking here�� Needless to say� it is really
easy to write unreadable code using inheritance�

So when is it a good idea to use inheritance and when should it be avoided
 My rule
of thumb is to only use it for representing shared behavior between objects� and to never
use it for representing shared implementation� With C��� you can use inheritance for both
concepts� but only the �rst will lead to truly simpler implementations�

To illustrate the di�erence between shared behavior and shared implementation� suppose
you had a whole bunch of di�erent kinds of objects that you needed to put on lists� For
example� almost everything in an operating system goes on a list of some sort� bu�ers�
threads� users� terminals� etc�

A very common approach to this problem 	particularly among people new to object�
oriented programming� is to make every object inherit from a single base class Object� which
contains the forward and backward pointers for the list� But what if some object needs
to go on multiple lists
 The whole scheme breaks down� and it�s because we tried to use
inheritance to share implementation 	the code for the forward and backward pointers� instead
of to share behavior� A much cleaner 	although slightly slower� approach would be to de�ne
a list implementation that allocated forward�backward pointers for each object that gets put
on a list�

In sum� if two classes share at least some of the same member function signatures � that
is� the same behavior� and if there�s code that only relies on the shared behavior� then there
may be a bene�t to using inheritance� In Nachos� locks don�t inherit from semaphores� even
though locks are implemented using semaphores� The operations on semaphores and locks
are di�erent� Instead� inheritance is only used for various kinds of lists 	sorted� keyed� etc���
and for di�erent implementations of the physical disk abstraction� to re�ect whether the disk
has a track bu�er� etc� A disk is used the same way whether or not it has a track bu�er� the
only di�erence is in its performance characteristics�

��� Templates

Templates are another useful but dangerous concept in C��� With templates� you can
parameterize a class de�nition with a type� to allow you to write generic type�independent
code� For example� our Stack implementation above only worked for pushing and popping
integers� what if we wanted a stack of characters� or �oats� or pointers� or some arbitrary
data structure

�

In C��� this is pretty easy to do using templates�

template �class T�

class Stack �

public	

Stack�int sz��

 Constructor	 initialize variables� allocate space�

�Stack���

 Destructor	 deallocate space allocated above�

void Push�T value��

 Push an integer� checking for overflow�

bool Full���

 Returns TRUE if the stack is full� FALSE otherwise�

private	

int size�

 The maximum capacity of the stack�

int top�

 Index of the lowest unused position�

T �stack�

 A pointer to an array that holds the contents�

��

To de�ne a template� we prepend the keyword template to the class de�nition� and we
put the parameterized type for the template in angle brackets� If we need to parameterize
the implementation with two or more types� it works just like an argument list� template
�class T� class S�� We can use the type parameters elsewhere in the de�nition� just like
they were normal types�

When we provide the implementation for each of the member functions in the class� we
also have to declare them as templates� and again� once we do that� we can use the type
parameters just like normal types�

 template version of Stack		Stack

template �class T�

Stack�T�		Stack�int sz� �

size � sz�

top � ��

stack � new T�size��

 Let�s get an array of type T

�

 template version of Stack		Push

template �class T�

void

Stack�T�		Push�T value� �

ASSERT��Full����

stack�top��� � value�

�

Creating an object of a template class is similar to creating a normal object�

void

��

test�� �

Stack�int� s����

Stack�char� �s� � new Stack�char������

s�Push�"��

s���Push��z���

delete s��

�

Everything operates as if we de�ned two classes� one called Stack�int� � a stack of
integers� and one called Stack�char� � a stack of characters� s behaves just like an instance
of the �rst� s� behaves just like an instance of the second� In fact� that is exactly how
templates are typically implemented � you get a complete copy of the code for the template
for each di�erent instantiated type� In the above example� we�d get one copy of the code for
ints and one copy for chars�

So what�s wrong with templates
 You�ve all been taught to make your code modular so
that it can be re�usable� so everything should be a template� right
 Wrong�

The principal problem with templates is that they can be very di�cult to debug � tem�
plates are easy to use if they work� but �nding a bug in them can be di�cult� In part this
is because current generation C�� debuggers don�t really understand templates very well�
Nevertheless� it is easier to debug a template than two nearly identical implementations that
di�er only in their types�

So the best advice is � don�t make a class into a template unless there really is a near
term use for the template� And if you do need to implement a template� implement and
debug a non�template version �rst� Once that is working� it won�t be hard to convert it to
a template� Then all you have to worry about code explosion � e�g�� your program�s object
code is now megabytes because of the �� copies of the hash table�list���� routines� one for
each kind of thing you want to put in a hash table�list���� 	Remember� you have an unhelpful
compiler��

� Features To Avoid Like the Plague

Despite the length of this note� there are numerous features in C�� that I haven�t explained�
I�m sure each feature has its advocates� but despite programming in C and C�� for over ��
years� I haven�t found a compelling reason to use them in any code that I�ve written 	outside
of a programming language class��

Indeed� there is a compelling reason to avoid using these features � they are easy to misuse�
resulting in programs that are harder to read and understand instead of easier to understand�
In most cases� the features are also redundant � there are other ways of accomplishing the
same end� Why have two ways of doing the same thing
 Why not stick with the simpler
one

I do not use any of the following features in Nachos� If you use them� caveat hacker�

��

�� Multiple inheritance� It is possible in C�� to de�ne a class as inheriting behavior
from multiple classes 	for instance� a dog is both an animal and a furry thing�� But if
programs using single inheritance can be di�cult to untangle� programs with multiple
inheritance can get really confusing�

�� References� Reference variables are rather hard to understand in general� they play
the same role as pointers� with slightly di�erent syntax 	unfortunately� I�m not jok�
ing�� Their most common use is to declare some parameters to a function as reference
parameters� as in Pascal� A call�by�reference parameter can be modi�ed by the calling
function� without the callee having to pass a pointer� The e�ect is that parameters
look 	to the caller� like they are called by value 	and therefore can�t change�� but in
fact can be transparently modi�ed by the called function� Obviously� this can be a
source of obscure bugs� not to mention that the semantics of references in C�� are in
general not obvious�

�� Operator overloading� C�� lets you rede�ne the meanings of the operators 	such as
� and ��� for class objects� This is dangerous at best 	�exactly which implementation
of ��� does this refer to
��� and when used in non�intuitive ways� a source of great
confusion� made worse by the fact that C�� does implicit type conversion� which can
a�ect which operator is invoked� Unfortunately� C���s I�O facilities make heavy use
of operator overloading and references� so you can�t completely escape them� but think
twice before you rede�ne ��� to mean �concatenate these two strings��

�� Function overloading� You can also de�ne di�erent functions in a class with the
same name but di�erent argument types� This is also dangerous 	since it�s easy to
slip up and get the unintended version�� and we never use it� We will also avoid using
default arguments 	for the same reason�� Note that it can be a good idea to use the
same name for functions in di�erent classes� provided they use the same arguments
and behave the same way � a good example of this is that most Nachos objects have
a Print�� method�

�� Standard template library� An ANSI standard has emerged for a library of rou�
tines implementing such things as lists� hash tables� etc�� called the standard template
library� Using such a library should make programming much simpler if the data struc�
ture you need is already provided in the library� Alas� the standard template library
pushes the envelope of legal C��� and so virtually no compilers 	including g��� can
support it today� Not to mention that it uses 	big surprise�� references� operator
overloading� and function overloading�

�� Exceptions� There are two ways to return an error from a procedure� One is simple
� just de�ne the procedure to return an error code if it isn�t able to do it�s job� For
example� the standard library routine malloc returns NULL if there is no available
memory� However� lots of programmers are lazy and don�t check error codes� So
what�s the solution
 You might think it would be to get programmers who aren�t lazy�

��

but no� the C�� solution is to add a programming language construct� A procedure
can return an error by �raising an exception� which e�ectively causes a goto back up
the execution stack to the last place the programmer put an exception handler� You
would think this is too bizarre to be true� but unfortunately� I�m not making this up�

While I�m at it� there are a number of features of C that you also should avoid� because
they lead to bugs and make your code less easy to understand� See Maguire�s �Writing Solid
Code� for a more complete discussion of this issue� All of these features are legal C� what�s
legal isn�t necessarily good�

�� Pointer arithmetic� Runaway pointers are a principal source of hard�to��nd bugs in C
programs� because the symptom of this happening can be mangled data structures in
a completely di�erent part of the program� Depending on exactly which objects are
allocated on the heap in which order� pointer bugs can appear and disappear� seemingly
at random� For example� printf sometimes allocates memory on the heap� which can
change the addresses returned by all future calls to new� Thus� adding a printf can
change things so that a pointer which used to 	by happenstance� mangle a critical data
structure 	such as the middle of a thread�s execution stack�� now overwrites memory
that may not even be used�

The best way to avoid runaway pointers is 	no surprise� to be very careful when using
pointers� Instead of iterating through an array with pointer arithmetic� use a separate
index variable� and assert that the index is never larger than the size of the array�
Optimizing compilers have gotten very good� so that the generated machine code is
likely to be the same in either case�

Even if you don�t use pointer arithmetic� it�s still easy 	easy is bad in this context�� to
have an o��by�one errror that causes your program to step beyond the end of an array�
How do you �x this
 De�ne a class to contain the array and its length� before allowing
any access to the array� you can then check whether the access is legal or in error�

�� Casts from integers to pointers and back� Another source of runaway pointers is that
C and C�� allow you to convert integers to pointers� and back again� Needless to say�
using a random integer value as a pointer is likely to result in unpredictable symptoms
that will be very hard to track down�

In addition� on some �� bit machines� such as the Alpha� it is no longer the case that
the size of an integer is the same as the the size of a pointer� If you cast between
pointers and integers� you are also writing highly non�portable code�

�� Using bit shift in place of a multiply or divide� This is a clarity issue� If you are doing
arithmetic� use arithmetic operators� if you are doing bit manipulation� use bitwise
operators� If I am trying to multiply by �� which is easier to understand� x �� �

or x � �
 In the ��s� when C was being developed� the former would yield more
e�cient machine code� but today�s compilers generate the same code in both cases� so
readability should be your primary concern�

��

�� Assignment inside conditional� Many programmers have the attitude that simplicity
equals saving as many keystrokes as possible� The result can be to hide bugs that
would otherwise be obvious� For example�

if �x � y� �

���

Was the intent really x �� y
 After all� it�s pretty easy to mistakenly leave o� the
extra equals sign� By never using assignment within a conditional� you can tell by code
inspection whether you�ve made a mistake�

�� Using �define when you could use enum� When a variable can hold one of a small
number of values� the original C practice was to use �define to set up symbolic names
for each of the values� enum does this in a type�safe way � it allows the compiler to
verify that the variable is only assigned one of the enumerated values� and none other�
Again� the advantage is to eliminate a class of errors from your program� making it
quicker to debug�

��

	 Style Guidelines

Even if you follow the approach I�ve outlined above� it is still as easy to write unreadable and
undebuggable code in C�� as it is in C� and perhaps easier� given the more powerful features
the language provides� For the Nachos project� and in general� we suggest you adhere to the
following guidelines 	and tell us if you catch us breaking them��

�� Words in a name are separated SmallTalk�style 	i�e�� capital letters at the start of each
new word�� All class names and member function names begin with a capital letter�
except for member functions of the form getSomething�� and setSomething��� where
Something is a data element of the class 	i�e�� accessor functions�� Note that you would
want to provide such functions only when the data should be visible to the outside
world� but you want to force all accesses to go through one function� This is often a
good idea� since you might at some later time decide to compute the data instead of
storing it� for example�

�� All global functions should be capitalized� except for main and library functions� which
are kept lower�case for historical reasons�

�� Minimize the use of global variables� If you �nd yourself using a lot of them� try and
group some together in a class in a natural way or pass them as arguments to the
functions that need them if you can�

�� Minimize the use of global functions 	as opposed to member functions�� If you write a
function that operates on some object� consider making it a member function of that
object�

�� For every class or set of related classes� create a separate �h �le and �cc �le� The �h �le
acts as the interface to the class� and the �cc �le acts as the implementation 	a given
�cc �le should include it�s respective �h �le�� If using a particular �h �le requires
another �h �le to be included 	e�g�� synch�h needs class de�nitions from thread�h�
you should include the dependency in the �h �le� so that the user of your class doesn�t
have to track down all the dependencies himself� To protect against multiple inclusion�
bracket each �h �le with something like�

�ifndef STACK$H

�define STACK$H

class Stack � ��� ��

�endif

Sometimes this will not be enough� and you will have a circular dependency� For
example� you might have a �h �le that uses a de�nition from one �h �le� but also

��

de�nes something needed by that �h �le� In this case� you will have to do something
ad�hoc� One thing to realize is that you don�t always have to completely de�ne a class
before it is used� If you only use a pointer to class Stack and do not access any member
functions or data from the class� you can write� in lieu of including stack�h�

class Stack�

This will tell the compiler all it needs to know to deal with the pointer� In a few cases
this won�t work� and you will have to move stu� around or alter your de�nitions�

�� Use ASSERT statements liberally to check that your program is behaving properly� An
assertion is a condition that if FALSE signi�es that there is a bug in the program�
ASSERT tests an expression and aborts if the condition is false� We used ASSERT above
in Stack		Push�� to check that the stack wasn�t full� The idea is to catch errors
as early as possible� when they are easier to locate� instead of waiting until there is
a user�visible symptom of the error 	such as a segmentation fault� after memory has
been trashed by a rogue pointer��

Assertions are particularly useful at the beginnings and ends of procedures� to check
that the procedure was called with the right arguments� and that the procedure did
what it is supposed to� For example� at the beginning of List��Insert� you could assert
that the item being inserted isn�t already on the list� and at the end of the procedure�
you could assert that the item is now on the list�

If speed is a concern� ASSERTs can be de�ned to make the check in the debug version
of your program� and to be a no�op in the production version� But many people run
with ASSERTs enabled even in production�

�� Write a module test for every module in your program� Many programmers have the
notion that testing code means running the entire program on some sample input� if
it doesn�t crash� that means it�s working� right
 Wrong� You have no way of knowing
how much code was exercised for the test� Let me urge you to be methodical about
testing� Before you put a new module into a bigger system� make sure the module
works as advertised by testing it standalone� If you do this for every module� then
when you put the modules together� instead of hoping that everything will work� you
will know it will work�

Perhaps more importantly� module tests provide an opportunity to �nd as many bugs
as possible in a localized context� Which is easier� �nding a bug in a � line program�
or in a � line program

 Compiling and Debugging

The Make�les we will give you works only with the GNU version of make� called �gmake��
You may want to put �alias make gmake� in your �cshrc �le�

��

You should use gdb to debug your program rather than dbx� Dbx doesn�t know how to
decipher C�� names� so you will see function names like Run$$%SchedulerP#Thread�

On the other hand� in GDB 	but not DBX� when you do a stack backtrace when in a
forked thread 	in homework ��� after printing out the correct frames at the top of the stack�
the debugger will sometimes go into a loop printing the lower�most frame 	ThreadRoot�� and
you have to type control�C when it says �more
�� If you understand assembly language and
can �x this� please let me know�

� Example� A Stack of Integers

We�ve provided the complete� working code for the stack example� You should read through
it and play around with it to make sure you understand the features of C�� described in
this paper�

To compile the simple stack test� type make all � this will compile the simple stack test
	stack�cc�� the inherited stack test 	inheritstack�cc�� and the template version of stacks
	templatestack�cc��

� Epilogue

I�ve argued in this note that you should avoid using certain C�� and C features� But you�re
probably thinking I must be leaving something out � if someone put the feature in the
language� there must be a good reason� right
 I believe that every programmer should strive
to write code whose behavior would be immediately obvious to a reader� if you �nd yourself
writing code that would require someone reading the code to thumb through a manual in
order to understand it� you are almost certainly being way too subtle� There�s probably a
much simpler and more obvious way to accomplish the same end� Maybe the code will be a
little longer that way� but in the real world� it�s whether the code works and how simple it
is for someone else to modify� that matters a whole lot more than how many characters you
had to type�

A �nal thought to remember�

�There are two ways of constructing a software design� one way is to make it so
simple that there are obviously no de�ciencies and the other way is to make it so
complicated that there are no obvious de�ciencies��

C� A� R� Hoare� �The Emperor�s Old Clothes�� CACM Feb� ����

� Further Reading

James Coplien� �Advanced C���� Addison�Wesley� This book is only for experts� but
it has some good ideas in it� so keep it in mind once you�ve been programming in C��
for a few years�

��

James Gosling� �The Java Language�� Online at �http���java�sun�com�� Java is a safe
subset of C��� It�s main application is the safe extension of Web browsers by allowing
you to download Java code as part of clicking on a link to interpret and display the
document� Safety is key here� since after all� you don�t want to click on a Web link and
have it download code that will crash your browser� Java was de�ned independently
of this document� but interestingly� it enforces a very similar style 	for example� no
multiple inheritance and no operator overloading��

C�A�R� Hoare� �The Emperor�s Old Clothes�� Communications of the ACM� Vol� ���
No� �� February ����� pp� ������ Tony Hoare�s Turing Award lecture� How do you
build software that really works
 Attitude is everything � you need a healthy respect
for how hard it is to build working software� It might seem that addding this whiz�bang
feature is only �a small matter of code�� but that�s the path to late� buggy products
that don�t work�

Brian Kernighan and Dennis Ritchie� �The C Programming Language�� Prentice�Hall�
The original C book � a very easy read� But the language has evolved since it was �rst
designed� and this book doesn�t describe all of C�s newest features� But still the best
place for a beginner to start� even when learning C���

Steve Maguire� �Writing Solid Code�� Microsoft Press� How to write bug�free software�
I think this should be required reading for all software engineers� This really will change
your life � if you don�t follow the recommendations in this book� you�ll probably never
write code that completely works� and you�ll spend your entire life struggling with hard
to �nd bugs� There is a better way� Contrary to the programming language types�
this doesn�t involve proving the correctness of your programs� whatever that means�
Instead� Maguire has a set of practical engineering solutions to writing solid code�

Steve Maguire� �Debugging the Development Process�� Microsoft Press� Maguire�s
follow up book on how to lead an e�ective team� and by the way� how to be an e�ective
engineer� Maguire�s background is that he is a turnaround artist for Microsoft � he
gets assigned to �oundering teams� and �gures out how to make them e�ective� After
you�ve pulled a few all�nighters to get that last bug out of your course project� you�re
probably wondering why in heck you�re studying computer science anyway� This book
will explain how to write programs that work� and still have a life�

Scott Meyers� �E�ective C���� This book describes how � easy ways to make mis�
takes C��� if you avoid these� you will be a lot more likely to write C�� code that
works�

Bjarne Stroustrup� �The C�� Programming Language�� Addison�Wesley� This should
be the de�nite reference manual� but it isn�t� You probably thought I was joking when
I said the C�� language was continually evolving� I bought the second edition of this
book three years ago� and it is already out of date� Fortunately� it�s still OK for the
subset of C�� that I use�

��

