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TDA361 - Computer graphics 2013 

Project - Pathtracer 

 

Introduction 

In this lab we will implement and improve a simple path-tracer. Path-tracing is a way of rendering global 
illumination images that has recently become quite popular in off-line renderers. You will start from some 
simple code that renders an image with direct lighting only. From there we will add some basic functionality 
and then you will do one larger assignment (suggestions at the end) on your own.  
 

The rendering Equation 

We will begin by describing the basic math behind what we are going to do, but very briefly. Refer to 
lecture notes, your textbook (chapters 7 and 9) and the internet for details. We start out with The 
Rendering Equation. This equation is actually all we have to solve to create glorious photo-realistic images: 

𝐿𝑜(𝒑, 𝜔) = 𝐿𝑒(𝒑, 𝜔) + ∫ 𝑓(𝒑, 𝜔, 𝜔′)𝐿𝑖(𝒑, 𝜔′) cos(𝒏, 𝜔′) 𝑑𝜔′
Ω

 

It says that the radiance (Watt per unit solid angle and unit area) 𝐿𝑜 that leaves a point p in the direction 𝜔 
can be found from the:  

 Emitted Light, 𝐿𝑒(𝒑, 𝜔) – If the surface at point p emits radiance in direction 𝜔 

 BRDF, 𝑓(𝒑, 𝜔, 𝜔′)  - This is a function that describes how the surface at point p reflects light 
that comes from direction 𝜔′ in direction 𝜔. Some details below.  

 Incoming radiance, 𝐿𝑖 (𝒑, 𝜔′) - This is the incoming light from direction 𝜔′, which we typically find by 
evaluating this same equation at the first intersection point in that direction. 

 Cosine term, cos(𝒏, 𝜔′) - This will attenuate the incoming light based on the incident angle. 

 

This equation is recursive (since 𝐿𝑖 depends on 𝐿𝑜) and there is no analytical solution to it. We can 
however estimate it using what is called Monte Carlo integration: 

𝐿𝑜(𝒑, 𝜔) ≈ 𝐿𝑒(𝒑, 𝜔) +
1

2𝜋𝑁
∑ 𝑓(𝒑, 𝜔, 𝜔𝑖)𝐿𝑖(𝒑, 𝜔𝑖) cos(𝒏, 𝜔𝑖)

𝑁

𝑖=0

  

and that is exactly what we are going to do. The directions 𝜔𝑖  above are N random directions uniformly 
distributed over the hemisphere. We will discuss better sampling later.  

The BRDF and Materials 

In our discussion and code we will talk about BRDFs and Materials. The Bidirectional Reflectance 
Distribution Function (BRDF) is a four-dimensional function that says how much of the energy that comes 
from direction 𝜔 will be reflected in some direction 𝜔′. The BRDF is reciprocal, i.e. 𝑓(𝒑, 𝜔, 𝜔′) =
 𝑓(𝒑, 𝜔′, 𝜔) and energy-conserving. This second property means that unless energy is absorbed and 
turned into heat, the total energy reflected will equal the total incoming energy over the hemisphere.  

In this tutorial, a Material can “contain” one BRDF or a combination of several BRDFs, and various settings 
that describe the material (e.g. reflectance, index-of-refraction and so on…).  

Path-tracing 

Let's move on to something more practical and find out how we 
can use all this to generate pretty images. We will use a method 
called path-tracing to solve the equation above and in this 
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section we will briefly cover how that works, before we go on to actually implement one.  

For starters, we will shoot one ray per pixel (the ray starts at the camera and goes “through” the pixel and 
into the scene). We find the first intersection-point with the scene and there we want to estimate the 
outgoing radiance.  

We do so by shooting one single ray to estimate the incoming radiance. At the first intersection point for 
that ray, we again shoot a single ray and so on, forming a path that goes on until there is no intersection 
(or we terminate on some other criteria). At each vertex of the path we will evaluate the emitted light, the 
BRDF and the cosine term to obtain the radiance leaving the point. When the recursion has terminated 
and we have obtained 𝐿𝑜 for the first ray shot, we record this radiance in the framebuffer.  

This is all we need to do to create a mathematically sound estimation of the true global illumination image 
we sought! It’s probably all black though, unless we were lucky and hit an emitting surface with some rays 
in which case it might be black with a little bit of noise. But if we keep running the algorithm, and 
accumulate the incoming radiance in each pixel (and divide by the number of samples) we would 
eventually end up with a correct image. This will take more time than is left for this course though, so let’s 
speed things up a bit.  

Direct Illumination 

The first step is to separate indirect and direct illumination. At each 
vertex of the path we will first shoot a shadow-ray to each of the light-
sources in the scene. If there is no geometry blocking the light we will 
multiply the radiance from the light with the BRDF and cosine term 
and then add the incoming indirect light by shooting a single ray as 
before. For this to be correct, we just have to make sure that the 
surfaces we have chosen to be light-sources do not contribute emitted 
radiance if sampled by an indirect ray.  

There! That’s a path-tracer and it generates correct images. It’s still painfully slow if any of our materials 
have a narrow brdf though. We will remedy this with what is called importance sampling.   

Importance sampling 

The problem is illustrated in the image to the right. Say that 
our BRDF represents a near mirror direction. That means 
that all sample directions that are not close to the perfect 
specular reflection direction will contribute almost nothing.  

With importance sampling we will instead pick samples from 
a distribution that looks more like the BRDF we are trying to 
sample, for which we know the Probability Density Function 
(PDF), 𝑝(𝜔𝑖).  

𝐿𝑜(𝒑, 𝜔) ≈ 𝐿𝑒(𝒑, 𝜔) +
1

𝑁
∑

𝑓(𝒑, 𝜔, 𝜔𝑖)𝐿𝑖(𝒑, 𝜔𝑖) cos(𝒏, 𝜔𝑖)

𝑝(𝜔𝑖)

𝑁

𝑖=0

  

This new equation is no different from the previous one, except that we now allow for varying PDFs 

(Before the pdf was a constant  
1

2𝜋
 since we sampled uniformly on the hemisphere). We will now pick 

samples with a probability that is much higher where the BRDF is large. We then have to divide the 
resulting radiance of each sample by the PDF in the sample 
direction to account for this. So we will have more samples where 
the brdf is high, but if we happen to pick a sample where the PDF 
is low, its contribution will be increased.  

Note that we rarely can find a sampling scheme that exactly 
matches the brdf and that the sampling scheme must be carefully 
chosen so that it will not occasionally sample directions with very 
low probability where the BRDF is not correspondingly low. If we 
do, then we can get very strong samples in some random pixels 
that take a very long time to converge.  
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Let’s look at a simple (perhaps the simplest) example. Say that our surface has a gray perfectly diffuse 
material. The surface absorbs 30% of the incoming light and reflects the rest. A diffuse material reflects 
equally in all directions.  

𝒄𝒐𝒍𝒐𝒓 = (0.7, 0.7, 0.7) 

𝑓(𝒑, 𝜔, 𝜔𝑖) =  
1

𝜋
𝒄𝒐𝒍𝒐𝒓 

 

Well… If it reflects equally in all directions, wouldn’t sampling the hemisphere uniformly be the best 
choice? No because what we are sampling is not just an integral over the brdf. We trying to find a solution 
to the integral:  

∫ 𝑓(𝒑, 𝜔, 𝜔′)𝐿𝑖(𝒑, 𝜔′) cos(𝒏, 𝜔′) 𝑑𝜔′
Ω

 

So ultimately we would like to importance sample with a sample distribution that matches this integral as 
well as possible. But the incoming light is rarely known in advance, and is expensive to evaluate. We can 
however importance sample on the cosine-term.  
 
In fact, there is a simple way to choose a direction with a pdf that is 𝑝(𝜔𝑖) =
cos(𝒏,𝜔′)

𝜋
. All you have to do is to generate points uniformly on a disc, then project 

these points on the hemisphere. You can find a number of useful sampling 
methods with pdfs and other good stuff in the Global Illumination Compedium:  
 
http://people.cs.kuleuven.be/~philip.dutre/GI/TotalCompendium.pdf 
 
Now let’s use this:  

1

𝑁
∑

𝑓(𝒑, 𝜔, 𝜔𝑖)𝐿𝑖(𝒑, 𝜔𝑖) cos(𝒏, 𝜔𝑖)

𝑝(𝜔𝑖)

𝑁

𝑖=0

=
1

𝑁
∑

1
𝜋 𝒄𝒐𝒍𝒐𝒓𝐿𝑖(𝒑, 𝜔𝑖) cos(𝒏, 𝜔𝑖)

cos(𝒏, 𝜔′)
𝜋

𝑁

𝑖=0

=
1

𝑁
∑ 𝒄𝒐𝒍𝒐𝒓 𝐿𝑖(𝒑, 𝜔𝑖)

𝑁

𝑖=0

  

How about that? Just by changing the directions you sample, the expression becomes a lot simpler and 
you get a better result. 

 

Implementing a basic path-tracer 

That’s enough theory for now. Open the Visual Studio 
solution file (“Pathtracer.sln”), make sure you have “Release” 
build activated and run the program. (If you open the solution 
in VS2012, it will prompt you to “update” the projects. Do this 
and everything should work the same.) 
 
Yikes! That’s not pretty at all. Well, don’t worry. You will have 
many opportunities to improve on this image. But first, let’s 
examine what the program does.  
 
Open the file pathtracer_main.cpp. This should look quite 
familiar by now. It is a simple OpenGL program that loads an 
OBJ model (in the main function towards the end) and then 
starts a GLUT main loop. 
 
Every time the display() function runs, it will trace one ray per 

pixel (by calling g_pathtracer.tracePrimaryRays()). This 
is where all the interesting stuff happens. When this is done, the PathTracer object will contain an updated 
framebuffer and that will be copied to a texture and rendered as a full-screen quad in the window.  
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You will spend very little time in this file, but look it through and make sure you understand what goes on. 
Then look at the very top where you can find these lines 
 
#ifdef _DEBUG 
int g_subsample = 8;  
#else  
int g_subsample = 1;  
#endif 

 
This is a variable you may want to change at times. The g_subsample variable lets you raytrace a smaller 
image than the size of the window while showing a magnified version. This is very useful while debugging 
or just trying something new. Set g_subsample to 2 for now.  
  

   

Pathtracer::tracePrimaryRays() 

Now take a look at this function to make sure you understand it. It takes the currently selected camera and 

generates one ray for each pixel. It then calls Scene::intersect for this ray. This method will find the first 

intersection between the ray and the scene and fills in an Intersection object. This object contains the 
position, normal and a pointer to the Material of the surface that was intersected. Or, the method returns 
false if there was no intersection.  

Then, if there was an intersection, we need to evaluate the radiance that reaches us from that point. This is 

calculated in Pathtracer::Li. If there was no intersection Pathtracer::Lenvironment is called 
instead, which currently just returns a constant radiance. 
 
Assignment:  
Let’s do a little something to improve the quality of the image already. The code currently samples the 
lower left corner of the pixel every single iteration. Modify this so that it chooses a random position within 
the pixel instead, to get some nice super-sample antialiasing.  
 
Tip: There is a randf() helper function in the file MCSampling.h which returns a random float value between 0.0 and 1.0 

 

Cameras and lights 

A quick intermission about cameras and lights. The pathtracer reads OBJ files, which look just as they 
always have, but the corresponding MTL files look nothing like real MTL files. Take a look at cornell.mtl. 
You need not care about the material definitions just yet, but note that we can define lights and cameras in 
these files that our program will respect.  
 
You can have any number of lights and any number of cameras. The lights are all used at once, and you 
can change the chosen camera with the ‘c’ key. Give it a try. The arguments for lights and cameras should 
be self-explanatory, but if not, ask an assistant. 
 

Pathtracer::Li() 

This is where all the interesting stuff happens. Or doesn’t happen as it stands, but you will soon take care 
of that. The current code just iterates over all lights and chooses one position on each light to sample. It 
then evaluates 𝑓(𝒑, 𝜔, 𝜔𝑖)𝐿𝑖(𝒑, 𝜔𝑖) cos(𝒏, 𝜔𝑖), where 𝐿𝑖 is the radiance from the light, and returns the sum 
of all light contributions.  
 
Assignment: 
The least thing we can do is to include light visibility so we get some shadows. 
Create a shadow-ray and intersect it with the scene to see if the light should 
contribute or not. When you are done you should see a lovely soft shadow like 
the image to the right.  
 
Tip #1: The Scene class has an intersectP()method that may suit your needs. What is the 

difference between this and the intersect() method?  

Tip#2: There is a value PT_EPSILON defined. This might come in handy here.  

 

Well, that was easy. Now for the tricky part. The current program is not a path-tracer. Because it doesn’t 
trace a path. It’s time to rewrite it so that it does not only look at the direct lighting but also shoots a ray to 
gather indirect illumination.  
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We could (and you may) implement this as a recursive algorithm, but in practice this is often a lot slower so 
in the pseudo code below we will instead suggest an iterative approach. Read the pseudo code below and 
make sure you understand it, then roll up your sleeves and implement it in C++:  
 
 
 
 
 
 
 
L    <- (0.0, 0.0, 0.0) 

pathThroughput  <- (1.0, 1.0, 1.0) 

currentRay  <- primary ray 

isect   <- primary intersection 

for bounces = 0 to PT_MAX_BOUNCES 

{ 

// Direct illumination 

 for each Light 

  sample a point on light 

  L += pathThroughput * [direct illumination from light if visible] 

 

 // Sample an outgoing direction, the brdf and pdf 

 (wo, brdf, pdf)  <- material.sample_f(wi) 

  

cosineterm = abs(dot(wo, isect.normal) 

 

 pathThroughput = pathThroughput * (brdf * cosineterm)/pdf 

 

 // If pathThroughput is too small there is no need to continue 

if max(pathThroughput) < PT_EPSILON return L 

 

 // Create next ray on path 

 currentRay <- new ray from intersection point in outgoing direction 

 

// Bias the ray slightly to avoid self-intersection  

 currentRay.o += PT_EPSILON * isect.normal 

 

 // Trace the new ray 

isect <- m_scene.intersect(currentRay) 

 

if no intersection  

 return L + pathThroughput * Lenvironment(currentRay) 

} 

 

Allright. If you get it right, you should have something like the image to 
the left. Isn’t life better with GI?  Now we will add some importance 
sampling. In your pathtracer, the direction in which to sample indirect 

illumination is chosen by the Material::sample_f() method. 
 

Assignment: 
These cubes all have a simple diffuse material so far. Change the 

DiffuseMaterial::sample_f() method so that it importance samples 
the cosine term.  

 
Tip: In MCSampling.h we have already provided a cosineSampleHemisphere() 

method for you.  

 
 

Now compare the non-importance sampled image and the importance sampled after the same number of 
samples per pixel (you can set the MAX_SAMPLES_PER_PIXEL pixel in pathtracer_main.cpp). 

 

Materials 

Take a look at Material.h. Besides the 

DiffuseMaterial with which you are 
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already acquainted there are a number of others. When we read an OBJ/MTL file from disc we actually 
build a little material tree that looks as to the right.   
 
 
 
 
 
 
 
 
 

Now uncomment the additional arguments to the materials in cornell.mtl. 
You should end up with something like the image to the left.  

 
Then play with the material settings and have fun. For exactly one hour. 
Then choose a project from below and show your work to an assistant.  

 
 
 
 
 
 
 
 

 

Project 

Now that you know the ins and outs of the path-tracer, choose a project from one of the suggested ones 
below, or if you want to do something else suggest it to an assistant.  

1. Microfacet BSDF – The BRDFs available in the pathtracer so far are quite simple. You can represent 
much more realistic looking materials if you add a BRDF that supports glossy reflections (not perfect 
mirror reflections). One good paper that presents a physically plausible Microfacet based BRDF that 
also handles rough refractions is:  
http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf 
Extend the path-tracer to use one of the models presented in this paper instead of our perfect specular 
reflection BRDF.  
Optional: Also allow rough refractions.  

2. BVH – Examine the Scene class. You will find that the triangles are all stored in one list and that when 
intersect is called, we will simply iterate through this list of triangles and intersect them one by one to 
find the closest intersection. This works decently for the simple scene we have looked at so far which 
only has 32 triangles, but for anything more complex it will be extremely slow.  
 
Implement an acceleration structure (a fairly simple, still powerful suggestion is an AABB tree). You 
should be able to get below 4 seconds per frame for the scene “cornellbottle2.obj” (on the lab 
machines). 
 
Optional: The acceleration structure is not the only thing that is slow in this path-tracer. Try to profile 
the code and make it as fast as you possibly can.  

3. HDRI lighting – Currently when a ray misses all geometry, the environment will return a single 
constant radiance. You can get much more interesting lighting of an outdoor scene if you instead fetch 
radiance from an HDRI environment.  
 
Either load and use an HDRI environment map or (trickier) implement a Sun&Sky model, for example 
this one:  
http://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf 
 
Optional: If you use a tricky HDRI environment map you may find that it takes a long time for your 

http://www.graphics.cornell.edu/~bjw/microfacetbsdf.pdf
http://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf
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render to converge.This can be greatly improved if you treat your environment as a light instead and 
importance sample the direction you sample. 

4. Textures – Just as in realtime rendering, offline renderers frequently use textures to increase the level 
of detail in a scene. Add support for diffuse textures to the code.  
 
Optional: You will be able to get even more interesting images if you allow for other types of textures 
as well. Try to implement support for normal-maps or specular-maps or transparency-maps or 
whatever tickles your fancy.  

 
 
 
 


