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TDA361 - Computer graphics 2014 

Lab 4 – Shading and 

Environment Mapping 

 

In this lab, we will start with some basic shading of our scene. That is, we will calculate the color of each 
fragment based on its material and where it is in relation to a light source. Then we will add environment-
mapping, which is a commonly used technique to simulate specular reflection in real-time graphics 
applications. The idea is that the environment around some object is rendered to some texture, either as a 
preprocessing step or each frame, and then, when shading the object, this texture is used to look up what 
will be reflected for each fragment.  
 
Run the program and look over the code as usual. The only things you have not seen in previous labs in 
the code so far are:  
 

 Assignment: The Quad is defined and drawn as a Triangle Strip instead of as separate triangles. 
What does this mean? Why might this be more efficient?  
 
____________________________________________________ 
 

 Assignment: There is now a light position defined right after the camera position (also in spherical 
coordinates). Make the light rotate by making light_theta depend on currentTime (you can update it 
every frame in the display() function). The light is drawn as a yellow sphere.  

 

Normals 

To do any sort of interesting shading (and environment mapping is no exception), each vertex of the mesh 
will need to have a normal associated with it. Normals are sent along with vertexes just like vertex colors or 
texture coordinates. So, after the vertex position definitions you just changed, add:  
 

// Define the normals for each of the four points of the quad 

float normals[] = { 

    0.0f,   0.0f, 1.0f,  // v0 -  v0 v2 

    0.0f,   0.0f, 1.0f,  // v1 -  |  /|  

    0.0f,   0.0f, 1.0f,  // v2 -  | / | 

    0.0f,   0.0f, 1.0f  // v3 -  v1 v3 

 }; 

 
Also create a buffer object for the normals with: 
 

 glGenBuffers( 1, &normalBuffer ); 

 glBindBuffer( GL_ARRAY_BUFFER, normalBuffer ); 

 glBufferData( GL_ARRAY_BUFFER, sizeof(normals),  

      normals, GL_STATIC_DRAW );  

 
Also, we will need to be able to read the normals from the shader so add a line: 
 

 glBindAttribLocation(shaderProgram, 0, "position");   

 glBindAttribLocation(shaderProgram, 2, "texCoordIn"); 

 glBindAttribLocation(shaderProgram, 1, "normalIn"); 
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Set up the pointer to the buffer object:  
 

glBindBuffer( GL_ARRAY_BUFFER, normalBuffer ); 

 glVertexAttribPointer(1, 3, GL_FLOAT, false, 0, 0); 

 

And enable the new vertex attribute array:  
 

glEnableVertexAttribArray(1); 

 

Loading an .obj model 

That was the manual way to get normals into the program. However, usually we will get our vertex data 
from some modeling package, in some file format. Also, a simple quad is just not going to illustrate the 
shading very well.  
 
Let’s make things more interesting by loading a model from disk. We supply a small class called 
OBJModel to help you do this, and you do not have to study it in detail unless you are interested. There 

is no magic being introduced here, though: the class simply loads the vertex data from disk and creates 
vertex array objects just as you have just done. 
 
Declare the global variable in the beginning of lab4_main.cpp:  
 

OBJModel *fighterModel; 

 

Then, in initGL() read the model from disk:  
 

fighterModel = new OBJModel; 

fighterModel->load("../scenes/fighter.obj"); 

 

Finally in display, replace the glDrawArrays call with:  
 

fighterModel->render(); 

 

You can run the program now, but the model might look strange. This model has no texture-coordinates 
defined, so we need to change some things in the fragment shader. The OBJModel::render() method will 

set two uniforms called has_diffuse_texture and material_diffuse_color. The 

corresponding uniforms should already exist in your fragment shader:  
 

uniform int has_diffuse_texture;  

uniform vec3 material_diffuse_color; 

 

There’s also a helper function that you can use, sampleDiffuseTexture(). The helper function will 

return either the color of the texture, if the model has a texture, or white. Use this function together with the 
material diffuse color (material_diffuse_color) to compute the fragment color: 
 

fragmentColor = vec4( sampleDiffuseTexture() *  

 material_diffuse_color, 1.0 ); 

 
Run the program again and enjoy the (somewhat) colorful 
space fighter (image, right)!  While it looks somewhat more 
interesting than the quad, we might perhaps want some 
interaction between the surfaces and that light? 
  

 

 

Shading 

It’s time to add some shading to our framework. The lighting 
model we will use is based on the lecture notes, so now is a 
good time to go over these to refresh your memory. The 

http://www.cse.chalmers.se/edu/course/TDA361/shading.pdf
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model will contain ambient, diffuse, specular, and emissive terms. These are combined (added) to produce 
a simple (ad-hoc) lighting model that accounts for the most prominent phenomena, while still being very 
much real-time. 
 
All shading will take place in view space, which is a convenient choice as we easily can acess the 
transformation to this space. To this end we will add code to transform the positions and normals to view 
space in the shaders. Therefore we need to send the modelView matrix along to the vertex shader. After 
the line: 
 

setUniformSlow(shaderProgram, "modelViewProjectionMatrix",  

     projectionMatrix * viewMatrix * modelMatrix); 

 

add:  
 

setUniformSlow(shaderProgram, "modelViewMatrix", viewMatrix *                                         

                                               modelMatrix); 

 
Note that we are here making use of a convenient helper function, setUniformSlow, that we provide in 

glutil.h/cpp, it simply wraps the calls to glGetUniformLocation and glUniform*. The 

function is overloaded for a few of the most common types, e.g. float4x4, float and float3. 

 
Next, declare this matrix as a uniform input to the vertex shader (in simple.vert): 
 

 uniform mat4 modelViewMatrix; 

 
Also, normals can usually not be transformed with the ordinary modelView matrix (see Course Book 
chapter 4.1.7). So, in display(), after the line you just added, add:  
 

setUniformSlow(shaderProgram, "normalMatrix",  

   inverse(transpose(viewMatrix * modelMatrix))); 

 

And again, add a uniform to the vertex shader:  
 

uniform mat4 normalMatrix; 

 

Finally, we will need the lights position in view space. Add the lines (in display(), after previous 
setUniformSlow): 

 
float4 lightPosition =  

  make_vector4(sphericalToCartesian(light_theta, light_phi, light_r), 1.0f); 

float4 viewSpaceLightPosition = viewMatrix * lightPosition; 

setUniformSlow(shaderProgram, "viewSpaceLightPosition",  

   make_vector3(viewSpaceLightPosition)); 

 

And add the uniform in the fragment shader (simple.frag):  
 

uniform vec3 viewSpaceLightPosition; 

 
Then calculate the view-space position and normal in the vertex shader and send them on to the fragment 
shader; add, before main() in simple.vert: 

  

out vec3 viewSpaceNormal;  

out vec3 viewSpacePosition; 

in  vec3 normalIn; 

 

Then in main(), to transform the vertex data:  

 

viewSpaceNormal = (normalMatrix * vec4(normalIn,0.0)).xyz; 

viewSpacePosition = (modelViewMatrix * vec4(position, 1.0)).xyz; 

 

Finally we add these as inputs to the fragment shader (before main() in simple.frag):  
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in vec3 viewSpaceNormal;  

in vec3 viewSpacePosition; 

 

We now have the data needed to compute shading, first a quick overview of the components. 
1. Ambient 

This term accounts for indirect light, and is the least accurate. The ambient light in the scene is 
supplied in the uniform scene_ambient_light. Materials can have an ambient reflectance term, 

and/or texture, but we simply make use of the diffuse reflectance, this often works fine. 
2. Diffuse 

Accounts for direct illumination that is scattered equally in all direction, according to the lambertian 

reflection model. The diffuse light in the scene is supplied in scene_light, and the reflectance is the 

combination of the uniform material_diffuse_color, and the texture diffuse_texture. 

3. Specular 
Accounts for more mirror-like behaviour, where light bounces of the surface, we will use the blinn-
phong model, which is more realistic and better looking than straight phong. The specular light is also 

represented by scene_light, as we do not need to support separate colors for diffuse and specular 

light (as some models do). Specular reflectance is in the uniform material_specular_color. 
4. Emissive 

Finally, emissive is what light originates, at the surface, i.e. the material glows. This is represented in 

the material_emissive_color.  

 
Each of the components are calculated separately and, as they model different phenomena in the lighting 
equation, can just be summed to produce the total shading. There is a set of empty functions for this in 
simple.frag. We will start by building up from ambient: 
 
First we need to calculate the ambient reflectance of the material, as mentioned above, this is simply done 
by multiplying together the diffuse texture and material colors, add at the start of main (in simple.frag):  

 

vec3 ambient = material_diffuse_color * sampleDiffuseTexture(); 

 
Check out sampleDiffuseTexture() in the code, which is a helper function to support materials with 

and without textures. Next we use this to calculate the reflected ambient light, replace : 
 

fragmentColor = texture(diffuse_texture, texCoord.xy); 

 
With: 
 

vec3 shading = calculateAmbient(scene_ambient_light, ambient); 

fragmentColor = vec4(shading, 1.0); 

 
Now you must also implement the function calculateAmbient, to do the correct thing with its 

arguments. Try to do this yourself, locate TODO #1, in the code (in a comment). The solution is at the end 
of this PM, under Solutions, soluton #2. 
 
Ambient light does not really add much realism, so we will proceed to add diffuse light as well. Again we 
start by working out how much diffuse light is reflected by the material. Add, right the declaration of 
ambient: 

 

vec3 diffuse = sampleDiffuseTexture() * material_diffuse_color; 

 
Note that this is in fact identical to the ambient reflectance, which is what we want in this simplified model. 
Now, we add the call to calculate the diffuse shading to the mix: 
 

vec3 shading = calculateAmbient(scene_ambient_light, ambient) 

        + calculateDiffuse(scene_light, diffuse, normal, directionToLight); 

 
This function takes quite a few arguments that we have not defined yet, so lets get to that first. The 
normal is just a re-normalized copy of the input viewSpaceNormal, add:   
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vec3 normal = normalize(viewSpaceNormal); 

 
Then we also need the direction to the light, which we can calculate from the light position (in view space), 
and the sample position (i.e. the position that we wish to compute shading for, also in view space). 
 

vec3 directionToLight =  

          normalize(viewSpaceLightPosition - viewSpacePosition); 

 
Now you should attempt to implement the diffuse shading in the function calculateDiffuse. Refer 

back to the lecture notes for the lambertian shading model. Locate  TODO #2, in the fragment shader. The 

solution is #2. 
 
The shading is now a bit more interesting, but we still have two more components to go. Next we add the 
specular component, which approximates glossy reflection of light. Glossy reflections do not usually pick 
up the material color, the way diffuse and ambient do, and is therefore modeled with separate colors and 
textures (we do not support using a specular texture). Again we compute the reflectance near the oters: 
 

vec3 specular = material_specular_color; 

 
And now we add to the shading again: 
 

vec3 shading = calculateAmbient(scene_ambient_light, ambient) 

        + calculateDiffuse(scene_light, diffuse, normal, directionToLight) 

  + calculateSpecular(scene_light, specular, material_shininess,  

                      normal, directionToLight, directionFromEye); 

 
And again we have a new parameter that we must supply: directionFromEye. The direction from the 

eye to the sample position, which is of course also in view space. In view space, conveniently, the eye is 
defined as being at the origin, and we therefore get that: directionFromEye =  

viewSpacePosition – {0, 0, 0}, which is the same as (with normalization thrown in): 

 

vec3 directionFromEye = normalize(viewSpacePosition); 

 
Perhaps unsurprisingly, we now exhort you to try to implement calculateSpecular,on your own. 

Refresh your memory from the lecture notes, and the book. Look for TODO #3, and the solution is, again, 

at the end: Solution #3. 
 
If you check out the specular high-lights, notice that the highlights are a bit washed out looking. This is 
because the traditional specular computations we have made use of does not conserve energy, we will 
make use of a normalization term to correct for this. For more details see Real Time Rendering 3rd Edition, 
Section 7.6, speciellt Figurer 7.36 och 7.37.  Add to calculateSpecular: 

 

float normalizationFactor = ((materialShininess + 2.0) / 8.0); 

 
Then multiply the specular comtribution by this factor before returning (Solution #4). The specular 
highlights should now be noticably more intense and vibrant. 
 
The final term in our model is emissive, material emittance is computed thus: 
 

vec3 emissive = sampleDiffuseTexture() * material_emissive_color; 

 
This is simply added to the shading, implement this. Notice how the cockpit, exhaust and underside of the 
space ship are no longer black. They are in fact giving off light (this will be much more noticable in tutorial 
#5). 
 
This concludes the basic implementation of the lighting model, we will now move on to cube map 
reflections and then integrate this into the lighting model. 
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Loading the Cube Map 

There are various ways of storing the whole environment in one texture (such as spherical texture 
mapping and paraboloid texture-mapping ). In this lab we will use a technique called Cube Mapping which 
is simple in that it simply stores the environment as six images corresponding to the six faces of a cube 
surrounding the object. For more info on environment mapping, see chapter 8.4 of the course book. 
 
A cube map in OpenGL is just a special sort of texture. It is loaded and configured much like a normal 
(GL_TEXTURE_2D) texture, except it has six images that must be loaded separately. First of all, take a 
look at the six images we will be using in the project directory (cube0.png, cube1.png, …). Now, to load 
these images into a texture, add the lines:  

 cubeMapTexture = loadCubeMap("cube0.png", "cube1.png",  

          "cube2.png", "cube3.png",  

          "cube4.png", "cube5.png");  

 
…after the loading of the 2D  texture.  loadCubeMap() is a little helper function we made for you (in 
glutil.cpp). Take a look at it. It works just like loading a 2D texture as you did in Lab 2.  
 
Now we need to associate a sampler uniform with the second texture unit, so we can look at the texture 
from the shaders. Find the place where this is done for the 2D texture and add:  
 

 // Get the location in the shader for uniform tex0 

 setUniformSlow(shaderProgram, "diffuse_texture", 0 ); 

 setUniformSlow(shaderProgram, "environmentMap", 1);  

 
Before drawing our fighter, we want to bind the cube map to texture unit 1 (the 2D texture is on unit 0) so, 
in display(), just before rendering the fighter, add:  
 

 glActiveTexture(GL_TEXTURE0); 

 glBindTexture(GL_TEXTURE_2D, texture); 

 glActiveTexture(GL_TEXTURE1); 

 glBindTexture(GL_TEXTURE_CUBE_MAP, cubeMapTexture); 

 

Using the Cube Map 

Now we have all we need to add reflection of the environment to our lighting model. Let’s modify the 
shaders. Add to the fragment shader: 
 

uniform samplerCube environmentMap;  

 
before the main() function. Finally, we will sample the environment map, to get a reflection per fragment. 
The first thing we need to do is figure out the reflection vector (the vector that goes towards the eye, 
reflected around the normal vector, in view-space):  
 

 vec3 reflectionVector = reflect(directionFromEye, normal); 

 

Unfortunately, we need to look up the environment map in world space, as the data in it is supposed to 
represent the entire environment. Therefore we will transform the reflection vector to world space, using an 
inverse normal transform from view to world space. 
 

 vec3 reflectionVector = (inverseViewNormalMatrix * 

    vec4(reflect(directionFromEye, normal), 0.0)).xyz; 

 

Now we also must supply the uniform  inverseViewNormalMatrix. In simple.frag add: 

 

 uniform mat4 inverseViewNormalMatrix; 

 
And to set this uniform add:  
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 setUniformSlow(shaderProgram, "inverseViewNormalMatrix", 

  transpose(viewMatrix)); 

 
Then use this vector to lookup the reflected color in the Cube Map, in simple.frag: 
 

vec3 envMapSample = texture(environmentMap, reflectionVector).rgb; 

  
To see the result, temporarily set the output color to the environment map sample:  
 

//fragmentColor = vec4(shading, 1.0); 

fragmentColor = vec4(envMapSample, 1.0); 

 
Run the program again. Shiny! A bit too shiny perhaps.  
We now want to integrate this into the light model 
somehow. We do this by simply adding the environment 
map sample multiplied with the specular reflectance to 
the final shading. The rationale behind this is that the 
mirror reflection is also a form of specular reflection. 
Adding this is fine as the environment map does not 
contain the direct light from the light source, which is 

added earlier in calculateSpecular.  Attempt to do 

this. The solution is #5. 
 

Fresnel Reflections 

The final improvement that we w ill add to the lighting 
model, is a fresnel term, affecting the specular 
reflections. In reality materials reflect more at glancing 
angles, which is easily observed in puddles of water (for 
example); they look like mirrors from a distance, but 
when looking straight down you can see the road 
surface beneeth. 
 
The actual phenomenon is quite complex, and is therefore usually approximated. We will use the schlick 
approximation, which is common in real-time renering, see the course book (Real Time Rendering 3rd 
edition), Avsnitt 7.5.3. To include it in our shading, add to simple.frag as below: 

 

vec3 fresnelSpecular = calculateFresnel(specular, normal,  

                                         directionFromEye); 

 
Then replace the uses of specular with fresnelSpecular, in the lighting calculations. Now try to 

implement calculateFresnel, locate TODO #4. Note that we use the specular reflectance as the ‘r0’ 

value, and that this is of type vec3. The solution is given in Solution #6. Notice the suble, effect in the 

below pair of images, to the right, the fresnel term gives a brighter edge. 
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When done, show your result to one of the assistants. Have the finished program running and be 
prepared to answer some questions about what you have done. 

Solutions 

Try to figure out on your own, how to write these. Take a look at these solutions when you get 
stuck, or when the results seems wrong. 

Solution #1: 

vec3 calculateAmbient(vec3 ambientLight, vec3 materialAmbient) 

{ 

  return ambientLight * materialAmbient; 

} 

 

Solution #2: 

vec3 calculateDiffuse(vec3 diffuseLight, vec3 materialDiffuse,  

                      vec3 normal, vec3 directionToLight) 

{ 

  return diffuseLight * materialDiffuse  

            * max(0, dot(normal, directionToLight)); 

} 

 

Solution #3: 

vec3 calculateSpecular(vec3 specularLight, vec3 materialSpecular,  

                       float materialShininess, vec3 normal,  

                       vec3 directionToLight, vec3 directionFromEye) 

{ 

  vec3 h = normalize(directionToLight - directionFromEye); 

  return specularLight * materialSpecular  

     * pow(max(0, dot(h, normal)), materialShininess); 

} 

 

Solution #4: 

vec3 calculateSpecular(vec3 specularLight, vec3 materialSpecular,  

                       float materialShininess, vec3 normal,  

                       vec3 directionToLight, vec3 directionFromEye) 

{ 

  vec3 h = normalize(directionToLight - directionFromEye); 

  float normalizationFactor = ((materialShininess + 2.0) / 8.0); 

  return specularLight * materialSpecular  

     * pow(max(0, dot(h, normal)), materialShininess) 

     * normalizationFactor; 

} 

 

Solution #5: 

vec3 shading = calculateAmbient(scene_ambient_light, ambient) 

  + calculateDiffuse(scene_light, diffuse, normal, directionToLight) 

  + calculateSpecular(scene_light, specular, material_shininess, 

                      normal, directionToLight, directionFromEye) 

  + emissive 

  + envMapSample * specular;  
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Solution #6: 

vec3 calculateFresnel(vec3 materialSpecular, vec3 normal,  

                      vec3 directionFromEye) 

{ 

  return materialSpecular + (vec3(1.0) - materialSpecular)  

    * pow(clamp(1.0 + dot(directionFromEye, normal), 0.0, 1.0), 5.0); 

} 

 

 


