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TDA361 - Computer graphics2014 

Lab5–Render to Texture 

 

Introduction 

In this tutorial we are going to create dynamic textures, by rendering to them. This can be used to create a 
wide range of effects, for example reflections and dynamic environment maps. It is also the basis for 
shadow mapping, which we will encounter in the next tutorial. We will now use the technique in to create a 
surveillance camera thingy, which is another popular use for render to texture. 

To make things interesting, the program loads some 
models. There is a spaceship of some kind, a 
surveillance camera and three security consoles. Our 
job is to ensure that what is seen through the high-tech, 
brown security camera is shown on the screens in the 
consoles. 

Assignment: Before you go on run the program to see 
how the scene looks. It should look like the image on 
the right. Note that the consoles do not have any 
screens yet. We will fix this pretty shortly. 

Inspect the function display(). Notice how the code 

sets up the viewport, shader and view and projection 
matrices from the (input controlled) camera. It then 
calls drawScene(), to draw the scene geometry, 

independent of view, which we will find useful very 
soon indeed. 

Frame Buffer Objects 

We have in previous tutorials created textures, and loaded them with data from files using DevIL. 
However, to fill them with rendered data we must first attach them to something called a Frame 
BufferObject, or FBO for short (See OpenGL spec §4.4). We have already used one, in OpenGL there is a 
default FBO that presents the rendered result to the screen (or in a window). 

An FBO can have multiple textures and render buffers, attached. This can be used to produce several 
textures simultaneously. For this tutorial we will need only one color texture target, and a depth buffer. 

First we need to create the color texture, into which we will be rendering. At the end of initGL(), add: 

 

 // Create a texture for the frame buffer, with specified filtering, 

 // rgba-format and size 

 glGenTextures(1, &texFrameBuffer); 

 glBindTexture(GL_TEXTURE_2D, texFrameBuffer); 

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); 

 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 512, 512, 0, GL_RGBA, 

   GL_UNSIGNED_BYTE, NULL); 

 
This creates a 512 by 512 texel (or pixel) texture, with RGBA channels, and sets some parameters. Note 
that we pass NULL to glTexImage2D as data pointer. This tells OpenGL to allocate the space, but to not 

initialize it. This is fine, as we will render to it. 

http://www.cse.chalmers.se/edu/course/TDA361/glspec30.20080923.pdf#page=295&zoom=75
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However, sometimes it is useful to use a placeholder image. We will do this to make sure that rendering 
the security screens is working properly before we start rendering to the texture. Comment out the call to 
glGenTextures and to glTexImage2D, and add code to load a texture instead: 

 

 //glGenTextures(1, &texFrameBuffer); 

 texFrameBuffer = ilutGLLoadImage("tvTestCard.jpg"); 

 glBindTexture(GL_TEXTURE_2D, texFrameBuffer); 

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); 

 // glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 512, 512, 0, GL_RGBA, 

   GL_UNSIGNED_BYTE, NULL); 

 
This lets DevIL generate the texture and load the image into it. Conveniently the resolution of 
tvTestCard.jpg is also 512 by 512. 

 
We also have to declare a variable, which stores the reference to the texture, called 
“texFrameBuffer”.Declare somewhere in global scope an integer GLuint texFrameBuffer;. 

 
Now we need to show the texture (that is the test image we’ve just loaded) on the security console 
screens. To achieve this, we have copied the vertex geometry for the screens into a function called 
drawSecurityScreenQuad(). Invoke this function just before the call to render the security console 

model (in the function drawSecurityConsole()).  

 

 … 

 drawSecurityScreenQuad(); 

 securityConsoleModel->render(); 

 … 

 
Next, to bind the texture, insert the following just before the call to drawSecurityScreenQuad(): 
 

 glBindTexture(GL_TEXTURE_2D, texFrameBuffer); 

 
The uniforms we set are those required by the shader (simple.frag) to enable texturing. This shader is 

designed to work with the OBJModel class, which sets certain material parameters. 

 
 
The expected result is shown to the right. Run your 
program and compare – you should now have three 
security consoles showing a test image.  
 
It’s about time we did some rendering to this texture.   
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Let us create an FBO to do this; add the following at the end of initGL(): 

 glGenFramebuffers(1, &frameBuffer); 

 // Bind the framebuffer such that following commands will affect it. 

 glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer); 

 
The first call allocates a new FBO, and the second binds it for use with subsequent commands (notice that 
this is analogous to how textures and VBOs are managed). Remember to declare the variable 
frameBuffer in global scope. 

 
Next we will attach the texture to the FBO (remember that the FBO is still bound): 
 

 glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, 

 GL_TEXTURE_2D, texFrameBuffer, 0);  

 
We also need to create a depth buffer for the FBO, and associate it with the frame buffer. Since we will not 
use the depth as a texture, we create a render buffer (See OpenGL spec §4.4.2) instead of a texture. 
Declare the variable depthBuffer and add the following. 

 

 glGenRenderbuffers(1, &depthBuffer); 

 glBindRenderbuffer(GL_RENDERBUFFER, depthBuffer); 

 glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, 512, 512); 

 // Associate our created depth buffer with the FBO 

 glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, 

   GL_RENDERBUFFER, depthBuffer);  

 
To see that it all went according to plan, we perform: 
 

 GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); 

 if(status != GL_FRAMEBUFFER_COMPLETE)  

 { 

  fatal_error( "Framebuffer not complete" ); 

 } 

 
There are a number of ways a frame buffer can be incomplete, it can for example lack color attachments 
etc.See OpenGL spec §4.4.4 for many more details. 
 
Finally we will bind the default frame buffer (0 or zero) such that subsequent commands do not affect the 
our FBO. 
 

 // Restore current binding (rendering) to the default frame buffer 

 glBindFramebuffer(GL_FRAMEBUFFER, 0); 

 
  

http://www.cse.chalmers.se/edu/course/TDA361/glspec30.20080923.pdf#page=298&zoom=75
http://www.cse.chalmers.se/edu/course/TDA361/glspec30.20080923.pdf#page=306&zoom=75
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Optional: Controlling Output Buffers 

This is somewhat advanced information, not strictly necessary, as the default for a newly created FBO will 
work fine. This is, however, needed in situations where there is more than one color attachment. It will also 
give you a more complete and correct view of how the associations work. While we have the FBO bound 
we specify the drawbuffer to use using the command: 

 

glDrawBuffer(GL_COLOR_ATTACHMENT0); 

 
This sets the 0th draw buffer to the render target to be directed to the texture or render buffer at 
GL_COLOR_ATTACHMENT0. This corresponds to what we set up in glBindFragDataLocation(). 
 

If there were multiple color attachments, we would use: 
GLenum tgts[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 }; 

glDrawBuffers(2, tgts); 

We would also added another glBindFragDataLocation(…, 1, …); this would correspond to 

GL_COLOR_ATTACHMENT1 (See OpenGL spec §4.4). 

 
Perhaps confusingly, we can reverse the draw buffer order, as below (notice the 0 and 1 changing places): 

GLenum tgts[2] = { GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT0 }; 

glDrawBuffers(2, tgts); 

In which case the out variable “fragmentColor” ends up in GL_COLOR_ATTACHMENT1 and vice 

versa.  This is just one example of how, in OpenGL, there are often many ways to do the same thing. This 
flexibility allows efficient solutions to be created, but can sometimes lead to non-obvious code. 
 

 

 

Rendering to the FBO 

To render the scene from the point of view of the security camera we must make use of the FBO we 
created earlier. To bind the FBO, set the viewport and clear the attached targets, add this at the beginning 
of display()(after the first call to glUseProgram()): 

 // bind the frameBuffer as our render target, this means that render  

 // operations will end up affecting the texture 'texFrameBuffer'  

// that we attached to the frame buffer earlier. 

 glBindFramebuffer(GL_FRAMEBUFFER, frameBuffer); 

 

 // We must also set the viewport for the frame buffer to match the 

 // size of the texture, if it is not the same portions may not be  

 // drawn or things may end up outside of the texture (as in not be 

 // visible). 

 glViewport(0, 0, 512, 512); 

 

 // Clear the color/depth buffers of the current FBO  

 // (i.e. the attached textures and render buffers) 

 glClearColor(0.6,0.0,0.0,1.0); 

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);  

 
We must perform the rendering to texture before the rendering of the scene to the default render target, as 
we will use the result as a texture. If we were to do it after, we’d lag a frame behind. 
 
Any rendering commands following these lines will now end up drawing into the texture. Next we call 
drawScene()(note that this is in addition to the call already present further down, and which renders to 

the default frame buffer): 
 

 drawScene(shaderProgram,  

   lookAt(securityCamPos, securityCamTarget, up),  

   perspectiveMatrix(45.0f, 1.0f, 1.5f, 100.0f)); 

 
We pass in a view matrix looking from the securityCamPos towards the securityCamTarget. We 

also create a perspective projection. Notice that the near plane is 1.5 units out, this is important as if it is 

http://www.cse.chalmers.se/edu/course/TDA361/glspec30.20080923.pdf#page=302&zoom=75
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too close we will just see the inside of the security camera! Also note that the aspect ratio is 1.0 -- this is 
not strictly correct, since it should match that of the security console screens. 
 
We’re now done rendering to our FBO! All we need to do to conclude is to bind the default frame buffer, in 
order to make the ordinary scene drawing end up on screen. Insert the below after the call to drawScene: 

 

// Bind the default frame buffer 

 glBindFramebuffer(GL_FRAMEBUFFER, 0); 

 
If you run the program now, the result should be like shown 
here to the right. 

 

 

 

 

 

 

 

Undefined Behavior 

If you zoom in on one of the console screens you may see the consoles in the texture, complete with the 
screen (i.e. recursive behavior). You also may not! See the 
image to the right for an example, here we see the space 
ship, but one console is missing. 
 
This uncertainty arises from the fact that we are actually 
breaking the OpenGL law, or standard: We use the texture in 
the scene, while it is being rendered to. That is, when we call 
drawScene to render to the texture, it binds the very same 

texture in drawSecurityConsole. That this is not healthy 

should be obvious, if you think about it for a while. 
 
Now, we might expect OpenGL to report an error message in 
this kind of situation. However, it does not. OpenGL is 
performance oriented, and mandating excessive error checks 
may make API overhead higher, therefore it is common for 
this kind of misuse to result in undefined behavior, which is 
the OpenGL way of giving the implementer (i.e. AMD or 
NVIDIA) free reins.  
 
A straightforward way to correct this is to copy the texture before using it, then we never render to it while 
in use. For example: render to texture A, copy A to texture B, bind texture B and render the scene. Another 
way is to alternate between textures being rendered to and used, which should be more efficient, but also 
a little more complicated to set up. 
 
Let’s try the first solution, that is, copy the texture after drawing to it. First we need to create another 
texture, call it texFrameBuffer2. Next, initialize it in the exact same way as texFrameBuffer.  Now 

we want to copy the frame buffer contents into this texture after drawing the scene, which is fortunately 
simple. Just after drawing the scene into the screen frame buffer, and while it is still bound, add: 
 

 // copy to second texture 

 glBindTexture( GL_TEXTURE_2D, texFrameBuffer2 ); 

glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, 512, 512); 

glBindTexture( GL_TEXTURE_2D, 0);  
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Then we must change which texture is used when drawing 
the security screen to be texFrameBuffer2. 

 
The result should now look like the image to the right. Notice 
how the console is shown recursively on screen. If you 
squint you can even make out the red pixel or so that is the 
space ship in the third recursion. In principle, it goes on 
forever. 
 
Assignment: Discuss in the group uses for rendering to 
textures - what kind of effects can you think of? (If you are 
working alone try to find some else who is in the same 
situation) 
 
______________________________________________ 
 
______________________________________________ 
 
______________________________________________ 

 

Post Processing 

Post processing is perhaps the most common use for render to texture today, with the very likely exception 
of shadow maps. Most, if not all, games make use of a post-processing pass to change aspects of the look 
of the game, creating effects such as motion blur, depth of field, bloom, simple color changes, magic 
mushrooms, and more.  

Conceptually post processing is simple: instead of rendering the scene to the screen, it is rendered an off-
screen render target of the same size. Next, this render target is used as a texture when rendering a full 
screen quad and a fragment shader can be used to change the appearance. Remember that a fragment 
shader is executed once for each fragment, and for a full screen quad this is the same as each pixel. 

Add a new FBO to the program named postProcessFrameBuffer, with a texture and depth buffer, as 

before. Call the texture texPostProcess, and make sure to match the size of the default frame buffer 

(e.g. window size). The steps are the same as we have just used to make the security screen render 
target. However, to make it easier to access the texture using pixel coordinates in the post processing 
shader later, we must use the target GL_TEXTURE_RECTANGLE_ARB instead of GL_TEXTURE_2D, 

when setting up and binding the texture. Note that we could use an ordinary 2D texture instead and use 
texelFetch, to sample the textures. However, this requires integer coordinates, which disables bilinear 

filtering, which we make use of to extend the blur kernel.  
 
Now ensure that this frame buffer is bound instead of the default when the scene is rendered. That is, 
replace the buffer used as target here with postProcessFrameBuffer. Remember to bind the default 

FBO again after drawing the scene to the post processing FBO. 
 

// Bind the default frame buffer 

 glBindFramebuffer(GL_FRAMEBUFFER, 0); 

 
Now, nothing will show up on screen, as the scene is now drawn into a texture. To verify that it is working, 
we will add a step to copy the contents of a frame buffer to another. After scene rendering, add the 
following: 
 

 glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); 

glBindFramebuffer(GL_READ_FRAMEBUFFER, postProcessFrameBuffer); 

glBlitFramebuffer(0, 0, w, h, 0, 0, w, h, GL_COLOR_BUFFER_BIT, 

GL_NEAREST); 

 
This will copy the entire contents of the bound GL_READ_FRAMEBUFFER (here identified by 

postProcessFrameBuffer) into the bound GL_DRAW_FRAMEBUFFER (here the default 0). (The term 

“blit” is derived from Block Image Transfer, a common operation in computer graphics.) 
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Running the program now should yield exactly the same result as earlier, before we started adding post 
processing. This means that the texture texPostProcess, now contains the rendered scene. 

 
Now then, we will add a fragment shader and do some actual post processing (not just post copying). To 

this end, there is already a second shader pair loaded by the tutorial, “postFx.vert/postFx.frag”. 

Comment out the code to blit the frame buffer again, and instead make sure to bind the default FBO 
 

glBindFramebuffer(GL_FRAMEBUFFER, 0); 

glViewport(0, 0, 512, 512); 

glClearColor(0.6,0.0,0.0,1.0); 

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 

 
Then use the shader postFxShader, and set the parameters needed: 

 

setUniformSlow(postFxShader, "frameBufferTexture", 0); 

glBindTexture(GL_TEXTURE_RECTANGLE_ARB, texPostProccess); 

setUniformSlow(postFxShader, "time", currentTime);  

 
Finally we draw a full screen quad by calling the function 
drawFullScreenQuad(). This function is defined at the end 

of the main file. If everything has gone according to plan, you 
should now see something like the image to the right, where 
the image has been subjected to a good old sepia tone filter. 
(Sepia tone is commonly seen in old photographs. Wikipedia 
has more information about this.) 
 
Inspect the postFx.frag shader. There are several 

functions defined that can be used to achieve different effects. 
Notice that they affect different properties to achieve the effect: 
the wobbliness is affected by changing the input coordinate, 
blur samples the input many times, while the two last simply 
change the color sample value. 
 
Note that we use a special type of sampler to access the texture, sampler2DRect. This allows us to use 

screen coordinates to sample the texture (normally, textures are sampled with coordinates in the range [0, 
1]). This allows the use of the built in OpenGL variable gl_FragCoord as texture coordinates, which 

supplies the screen space coordinates (within the render target) of the fragment being shaded. 
 
The functions are used from the main function in the shader, try out different ones, and combine them. 
Notice the last line which is a commented out variation that chains all effects (except grayscale). 
 

vec2 mushrooms(vec2 inCoord); 

 
Perturbs the sampling coordinates of the pixel and returns the new coordinates. These can then be used 
to sample the frame buffer. The effect uses a sine wave to make us feel woozy. Can you make it worse? 
 

vec3 blur(vec2 coord); 

 
Samples a region of the frame buffer around the input coordinates, using Gaussian filter weights to blur the 
image as the kernel width is not that large, it doesn’t produce a very large effect. Making it larger is both 
tedious and expensive, for real time purposes a separable blur is preferable, which requires several 
passes. We will explain this process in the (optional) Section Efficient Blur and Bloom below. 
 

vec3 grayscale(vec3 sample); 

 
The grayscale() function simply returns the luminance (perceived brightness) of the input sample color. 

 

vec3 toSepiaTone(vec3 rgbSample); 
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The toSepiaTone() function converts the color sample 

to sepia tone (by transformation to the YIQ color space), to 
make it look somewhat like an old photo. 
 
Experiment with the different effects, for example change 
the colorization in the sepia tone effect, can you make it 
red? Also try combining them. Try to understand how each 
one produces its result. 

 
Assignment: You shall now add another effect. The effect 
is called Mosaic and the result is shown to the right. Each 
square block of pixels shows the color of the same pixel 
(single sample, no averaging needed), for example the top 
right or some such. Implement this effect by adding a new 
function in the fragment shader. Consider the pre-made 
effects: what part of the data do you need to change? 

 
When done, show your result to one of the assistants. Have the finished program running and be 
prepared to answer some questions about what you have done. 

Optional:  Efficient Blur and Bloom 

Heavy blur requires sampling a large area. To implement such large filter kernels efficiently, we can exploit 
the fact that the Gaussian filter kernel can be decomposed into a vertical and horizontal component, which 
are then executed as two consecutive passes. The process is illustrated below.  
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To implement this in our tutorial, we will need to add two new FBOs: one to store the result of the first, 
horizontal, blur pass, and then another to receive the final blur after the vertical blur pass. Note that, in 
practice, we can just ping-pong between buffers, to save storage space. However, this adds confusion, 
and we want the blur in a separate buffer to create bloom. 
 
The barrage of global variables to keep track of all these FBOs and textures is becoming a bit much, so 
now we will introduce a helper function, and structure to, to help create and use post-processing FBOs. 
 

struct FboInfo 

{ 

  GLuint id; 

  GLuint colorTextureTarget; 

  GLuint depthBuffer; 

  int width; 

  int height; 

}; 

 
This struct is used to store the relevant parts of our post processing FBOs: the FBO id, the attached 

color texture, the depth renderbuffer, and also the size. Add this declaration at the start of the main file, 
somewhere before the variable declarations. Next we will introduce a function to initialize the data 
structure. 
 

FboInfo createPostProcessFbo(int width, int height); 

 
Declare this early in the file, such that it can be used in the rendering. Then you should implement it. Place 
the function body at the end of the file. Essentially all you need to do is copy the code you wrote to create 
the original FBO, but make sure to store the resulting ID’s in an instance of FboInfo, which should be 

returned at the end of the function. 
 
Next, to make sure this now works correctly, replace the GLuint postProcessFrameBuffer, and its 

associated texture, texPostProcess, with the new helper structure, e.g.: 

 

FboInfo postProcessFbo; 

 
Then also replace the initialization code in initGL(), and you’ll probably have to update display() as 

well. After this you should be able to run your program and the result should still be the same. After all, the 
OpenGL commands issued should remain the same. 
 
Now we are ready to introduce the two new FBOs we need to produce the blur, which is simply reduced to 
one line of code each, as shown below. Also add code to initialize these, they should have the same 
dimensions as the original post processing FBO. 
 

FboInfo horizontalBlurFbo; 
FboInfo verticalBlurFbo; 

 
In the tutorial we have provided you with shaders implementing the horizontal and vertical filter kernels, 
see shaders/horizontal_blur.frag, shaders/vertical_blur.frag. Load these together 

with the vertex shadershaders/postFx.vert, and store the references in variables named 

horizontalBlurShader and verticalBlurShader.To render the blur, use this algorithm: 

 
1. Render a full-screen quad into the horizontalBlurFbo. 

a. Use the shader horizontalBlurShader. 

b. Bind the postProcessFbo.colorTextureTarget as input frame texture. 

2. Render a full-screen quad into the verticalBlurFbo. 

a. Use the shader verticalBlurShader. 

b. Bind the horizontalBlurFbo.colorTextureTarget as input frame texture. 

 
Implement this algorithm as a function. Call the function after the scene has been rendered into the post 
processing FBO. Now the verticalBlurFbo.colorTextureTarget contains the blurred version of 

the rendered image. 
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To check that the result is the expected, use 
glBlitFramebuffer, as shown earlier in the tutorial. If 

it works you should now see something like the image to 
the right. Nice and blurry. 
 
Now, blur itself is perhaps not the most desirable effect 
we can think of. Fortunately, we can use it to create one 
which is often pretty high on the list of demand: 
 

Bloom! 

Bloom, or glow, makes bright parts of the image bleed 
onto darker neighboring bits. This creates an effect, akin 
to what our optical system produces when things are 
really bright. Therefore this can create the impression 
that parts of the image are far brighter than what can 
actually be represented on a screen. Cool. But how to do 
that? 

The only thing we really need to add is a cutoff pass, 
before blurring the image, to remove all the dark portions 
of the scene. There is a shader for this purpose too: 
shaders/cutoff.frag. Load the shader, create a 

new FBOInfo cutoffFbo, and draw a full-screen pass 

into it. When visualized using blit it should look like this: 
 
Then use the cutoffFbo as input to the blur, which 

should produce a result, a lot like the last image on the 
right. 
 
Finally, all we need to do is to add this to the, unblurred, 
frame buffer (which should still be untouched in 
postProcessFbo). This can be achieved by simply 

rendering a full screen quad using additive blending, into 

this frame buffer. Another way is to bind it to a second 
texture unit during the post processing pass, and sample 
and add in the post processing shader. In our case, this 
last should be the easiest option. The screen shot below 
shows the bloom effect, where the blooming parts are 
also boosted by a factor of to, to create a somewhat over 
the top bloom effect.  
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Further Reading 

As always check out the course book, chapters?. The GPU Gems series is also a good bet, and available 
online (books 1-3, at least), GPU Gems 1 and GPU Gems 3, both dedicate a part to post-processing 
effects. 
  
Further reading on Gaussian blurring can be found in the blog used as the source of coefficient calculation 
magic in this tutorial. Some additional information is available 
 
Otherwise, Google tends to be useful with the right keywords, some of which you have hopefully picked up 
in this tutorial. 

http://http.developer.nvidia.com/GPUGems/gpugems_part04.html
http://developer.nvidia.com/node/155
http://theinstructionlimit.com/gaussian-blur-revisited-part-two
http://www.google.se/search?q=post+processing+shader

