
 Page 1

TDA361 - Computer graphics 2014

Lab 3 - Animation

Introduction

In this tutorial we are going to make things move, or animate. The goals are to be able to move the camera
to look at things from different angles, and to make a part of the scene move as time progresses.

In this laboration, we will use a Box class (defined in “Box.h”), that when instantiated creates the buffer
objects needed and that has a draw() method which renders the vertex array object. Look at this class and
try to understand what happens. It does exactly what you have done in previous labs to draw a number of
quads that make up a box.

Run the program, press mouse buttons and move the mouse around and see what happens. Then look
through the code and make sure you understand it all so far.

Assignment: What function is run when you press a mouse button? ___________________________

Assignment: What function is run when you move the mouse with a button held? __________________

In this laboration, we finally move completely into the 3d space. That is, we will have a Model-, a View- and
a Projection matrix which will be used to transform all vertices from their model-space coordinates to their
window coordinates. In the current code, the Model and View matrix are both just the identity-matrix. We
will implement the camera by modifying the View matrix and then add some animation by modifying the
Model matrix.

Notice that the three matrices are multiplied together in the display() method and sent along to the vertex
shader with this code:

// Concatenate the three matrices and pass the final transform

// to the vertex shader

float4x4 modelViewProjectionMatrix = projectionMatrix *

 viewMatrix * modelMatrix;

int loc = glGetUniformLocation(shaderProgram,

 "modelViewProjectionMatrix");

glUniformMatrix4fv(loc, 1, false, &modelViewProjectionMatrix.c1.x);

Camera Movement

We will create a simple pivoting camera that is able to rotate around a
fixed point in space, and zoom in and out. We represent the camera using

spherical coordinates (r, θ,) instead of the cartesian (x,y,z) coordinates.

In this representation, r is the distance from origo to the camera, is the
angle between the up-vector and the vector pointing at the camera and θ
is the angle that vectors projection on the xz-plane makes with the “z”
vector.

First then, we will define these variables globally so insert this somewhere
in the beginning of main.cpp:

 Page 2

float camera_theta = 0.0f;

float camera_phi = M_PI/2.0f;

float camera_r = 8.0;

We will use mouse input to control this movement, which is we can do using GLUT. In the project this is
set up using these two lines:

 glutMouseFunc(mouse); // callback function on mouse buttons

 glutMotionFunc(motion); // callback function on mouse movements

This instructs GLUT to send mouse button events to the function mouse and motion, when a button is held

down, to the function motion. Study these two functions, in mouse there is code to handle button

presses and set the variables, which represent the state of the mouse buttons:

bool leftDown = false;

bool middleDown = false;

bool rightDown = false;

Now let’s look at the function motion. In this function we will translate the movement of the mouse into

camera movement. This is done depending on which mouse button is held down.

When the left mouse button is pressed, we want to modify the two angles in the representation, θ and .
Add:

if(leftDown)

{

 camera_phi -= float(delta_y) * 0.3f * M_PI / 180.0f;

 camera_phi = min(max(0.01f, camera_phi), M_PI - 0.01f);

 camera_theta += float(delta_x) * 0.3f * M_PI / 180.0f;

}

Next we must use this information to create a view matrix for use when rendering. Find the line in display()
where the View matrix is initialized and replace it with:

float3 camera_position = sphericalToCartesian(camera_theta,

 camera_phi,

 camera_r);

float3 camera_lookAt = make_vector(0.0f, 0.0f, 0.0f);

float3 camera_up = make_vector(0.0f, 1.0f, 0.0f)

float4x4 viewMatrix = lookAt(camera_position,

 camera_lookAt, camera_up);

Now run the program and make sure you can move the camera using the mouse.

Assignment

Next we will affect the distance to the center of attention, in the camera_r variable, if the middle button is

pressed. Do this yourself and try it out.

Animation

In this part of the tutorial we want to animate part of the scene, to do this we will add a second box, drawn
using the same vertex data as the already existing box. We will achieve this by uploading a new
modelViewProjectionMatrix matrix. Directly after the call to myBox->draw() add:

// Draw a second box

float4x4 r = make_rotation_y<float4x4>(currentTime*M_PI*0.5f);

float4x4 t = make_translation(make_vector(8.0f, 1.0f, 0.0f));

modelMatrix = r * t;

modelViewProjectionMatrix = projectionMatrix * viewMatrix *

 Page 3

 modelMatrix;

// Update the modelViewProjectionMatrix used in the vertex shader

glUniformMatrix4fv(loc, 1, false, &modelViewProjectionMatrix.c1.x);

myBox->draw();

Assignment: Notice how the Model matrix is a concatenation of a rotation and a translation. What
happens if the order is reversed (that is modelMatrix = t * r)? Try to predict the result before you

try. What happened? (draw if it helps you)

For the fun of it, create a scaling matrix that varies with time:
float4x4 s = make_scale<float4x4>(sin(currentTime * 5.0f)*

 make_vector(1.0f, 1.0f, 1.0f));

And multiply the modelMatrix with it:
modelMatrix = r * t * s;

Run the program again and enjoy the result.

Assignments

Now, try to do the following things on your own:

 Add an animation (using currentTime) that only happens when the right mouse button is held down.

 Do the animation also after each left button press (and make the animation, in that case, last for 3
seconds).

 Optional: Add a new uniform float variable in the fragment shader called alpha, and use this to
animate the transparency of the second box. For example using a periodic function such as sin.

When done, show your result to one of the assistants. Have the finished program running and be
prepared to answer some questions about what you have done.

