Exercise 2

Functional dependencies Multivalued dependencies Normal forms (BCNF & 4NF)

Functional dependencies

In a relation, $R = (A_1, \dots, A_n, B, \dots)$,

A₁...A_n→B means that
If two tuples have the same value for A₁...
A_n, then they also have the same value for B.

Think of it as:

R – a table

A₁,...,A_n,B,... - column labels

Tuples - rows

NB!

- The "B" on the right hand side can NOT be a set of values.
- Hence, Student—PassedCourses is NOT a FD.
- Also, "B" must be a column in the table.
- Student—EligibleForGraduation is NOT a FD.

Keys

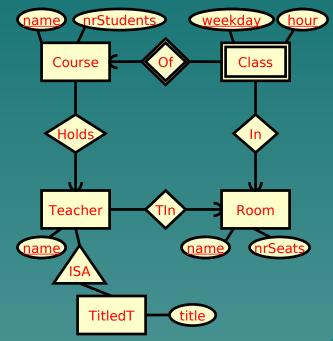
- IF A₁...A_n determines all other attributes/columns in the relation/table R
- AND this does not hold for any subset of A₁...A_n,
- THEN A₁...A_n is a key of R
- Any set of attributes that contains a key (including the set that contains nothing but the key) is a superkey of R
- You always have to pick a key as your primary key

Problems that can arise

Movie	Length	Actor
Star Wars	124	Carrie Fisher
Star Wars	124	Mark Hamill
Star Wars	124	Harrison Ford
Mighty Ducks	104	Emilio Estevez
Wayne's World	95	Dana Carvey
Wayne's World	95	Mike Myers

- Redundancy
- Update anomalies
- Deletion anomalies

Solution - BCNF


 ◆ IF whenever A₁...A_n→B holds on R, A₁...A_n must be a *superkey* of R
◆ THEN R is in BCNF

How to get there

• Find $A_1 \dots A_n \rightarrow B$ that violates BCNF Make two new tables/relations: - $\{A_1...A_n\}^+$, that is everything that is known as soon as you know A₁...A_n - R minus $\{A_1...A_n\}^+$ plus $A_1...A_n$ - A reference Repeat until no more violations

Let's try

- Course names
- Teacher names
- Teacher titles (optional, e.g. Professor)
- Class room names
- Class room capacity
- Number of students taking a course
- Day and time of classes

Classes(courseName, teacherName, teacherTitle, roomName, #students, weekday, time, #seats)

- courseName → teacherName (a course has only one responsible teacher)
- courseName → #students (a course has only one number of students)
- teacherName → teacherTitle (a teacher has at most one title, could be argued differently)
- teacherName → roomName (a teacher holds all classes in the same room, by the domain description)
- roomName → #seats (a room has only one number of seats)
- courseName, weekday, hour → roomName (a course has only one class at the same time)
- roomName, weekday, hour → courseName (only one course at a time can be in a room)
- Note that the second to last is actually not needed, since we have courseName → teacherName, teacherName → roomName.

Keys

- To find possible keys for the full relation, we need to compute the closures of all attributes.
- A trick is that we don't need to look at attributes that never appear on the left-hand side of a FD, since these can never give anything new.
- Another trick is that we only need to look at attribute sets that are supersets of some lefthand side for some FD, since if the set was not a superset of some left-hand side then there would be no FDs to follow!

- {courseName} + = {courseName, teacherName, #students, teacherTitle, roomName, #seats}
- {teacherName} + = {teacherName, teacherTitle, roomName, #seats}
- {roomName} + = {roomName, #seats}
- {courseName, teacherName} + = {courseName} +
- {courseName, roomName} + = {courseName} +
- {teacherName, roomName} + = {teacherName} +
- {courseName, weekday, hour} + = all attributes (only weekday and hour missing from {courseName} +)
- {roomName, weekday, hour} + = all attributes ({roomName, weekday, hour} gives courseName, from there the rest)
- {teacherName, weekday, hour} + = all attributes (teacherName gives roomName, from there the rest)

Closures cont.

 The full set of FDs for this relation, i.e. the closure of F (F+), is thus:

- courseName → teacherName, #students, teacherTitle, roomName, #seats
- teacherName \rightarrow teacherTitle, roomName, #seats
- roomName \rightarrow #seats
- roomName, weekday, hour → courseName, teacherName, #students, teacherTitle
- teacherName, weekday, hour \rightarrow courseName, #students

Now we decompose

• Violation 1: courseName \rightarrow teacherName

- R1(<u>courseName</u>, teacherName, #students, teacherTitle, roomName, #seats) (i.e. the attributes in {courseName} +).
- R2(<u>courseName</u>, <u>weekday</u>, <u>hour</u>) (i.e. the remaining attributes, plus courseName).
- A reference from R2.courseName to R1.courseName
- Violation 2 (in R1): roomName \rightarrow #seats
 - R11(<u>roomName</u>, #seats) (i.e. {roomName}+)
 - R12(<u>courseName</u>, teacherName, #students, teacherTitle, roomName) (i.e. the rest, plus roomName)
 - A reference from R12.roomName to R11.roomName

More decomposition

• Violation 3 (in R12): teacherName \rightarrow teacherTitle

- R121(<u>teacherName</u>, teacherTitle, roomName) (i.e. {teacherName} + restricted to R11 (meaning #seats no longer exists in R11)).
- R122(<u>courseName</u>, teacherName, #students) (i.e. the rest, plus teacherName)
- A reference from R122.teacherName to R121.teacherName
- We're done!
- Rooms(<u>roomName</u>, #seats) (R11)
- Teachers(<u>teacherName</u>, teacherTitle, roomName) (R121) roomName → Rooms.roomName
- Courses(<u>courseName</u>, teacherName, #students) teacherName → Teachers.teacherName
- Classes(<u>courseName</u>, <u>weekday</u>, <u>hour</u>) (R2) courseName → Courses.courseName

Multivalued dependencies

$\bullet A_1 \dots A_n \longrightarrow B_1 \dots B_m$

 Let's call all the attributes that are NOT in the As or Bs C₁...C_k

 Then if two tuples have the same A₁...A_n, you can switch the Bs or Cs "blockwise" between the tuples, and the result will be an existing tuple

A	В	С
A	В	С

MVD cont.

◆ $A_1...A_n \rightarrow B_1...B_m$ would therefore also mean $A_1...A_n \rightarrow C_1...C_k$

And all FDs are MVDs

Actor	Address	Movie
Carrie Fisher	Malibu	Star Wars
Carrie Fisher	Hollywood	Star Wars
Carrie Fisher	Malibu	Return of the Jedi
Carrie Fisher	Hollywood	Return of the Jedi

4NF

◆ Sharpen BCNF a bit ◆ IF whenever A₁...A_n→B is nontrivial on R, A₁...A_n must be a superkey of R ◆ THEN R is in 4NF

 Nontrivial basically means that the As, Bs and Cs are non-overlapping and non-empty sets

How to do it?

 Very similar procedure to making BCNF

 ...but I won't steal the fun exercise from you ⁽²⁾