

Exercise 2Exercise 2

Functional dependenciesFunctional dependencies

Multivalued dependenciesMultivalued dependencies

Normal forms (BCNF & 4NF)Normal forms (BCNF & 4NF)

Functional dependenciesFunctional dependencies

In a relation, In a relation, RR=(A=(A11,…,A,…,Ann,B,…),,B,…),

 AA11…A…Ann→→B means thatB means that

If two tuples have the same value for AIf two tuples have the same value for A11……
AAnn, then they also have the same value for , then they also have the same value for
B.B.

Think of it as:Think of it as:

RR – a table – a table

AA11,…,A,…,Ann,B,… - column labels,B,… - column labels

Tuples - rowsTuples - rows

NB!NB!

 The ”B” on the right hand side can The ”B” on the right hand side can
NOT be a set of values.NOT be a set of values.

 Hence, StudentHence, Student→→PassedCourses is PassedCourses is
NOT a FD.NOT a FD.

 Also, ”B” must be a column in the Also, ”B” must be a column in the
table.table.

 StudentStudent→→EligibleForGraduation is EligibleForGraduation is
NOT a FD.NOT a FD.

KeysKeys
 IF AIF A11…A…Ann determines all other determines all other

attributes/columns in the relation/table attributes/columns in the relation/table RR
 AND this does not hold for any subset of AND this does not hold for any subset of

AA11…A…Ann,,
 THEN ATHEN A11…A…Ann is a is a keykey of of RR
 Any set of attributes that contains a key Any set of attributes that contains a key

(including the set that contains nothing (including the set that contains nothing
but the key) is a but the key) is a superkeysuperkey of of RR

 You always have to pick a key as your You always have to pick a key as your
primary keyprimary key

Problems that can ariseProblems that can arise

Mike Myers95Wayne’s World

Dana Carvey95Wayne’s World

Emilio Estevez104Mighty Ducks

Harrison Ford124Star Wars

Mark Hamill124Star Wars

Carrie Fisher124Star Wars

ActorLengthMovie

 RedundancyRedundancy
 Update anomaliesUpdate anomalies
 Deletion anomaliesDeletion anomalies

Solution BCNFSolution BCNF

 IF whenever AIF whenever A11…A…Ann→→B holds on B holds on RR, ,
AA11…A…Ann must be a must be a superkeysuperkey of of RR

 THEN THEN RR is in BCNF is in BCNF

How to get thereHow to get there

 Find AFind A11…A…Ann→→B that violates BCNFB that violates BCNF
 Make two new tables/relations:Make two new tables/relations:

– {A{A11…A…Ann}}++, that is everything that is , that is everything that is
known as soon as you know Aknown as soon as you know A11…A…Ann

– RR minusminus {A {A11…A…Ann}}++ plus plus AA11…A…Ann

– A referenceA reference
 Repeat until no more violationsRepeat until no more violations

Let’s tryLet’s try
 Course namesCourse names
 Teacher namesTeacher names
 Teacher titles (optional, e.g. Professor)Teacher titles (optional, e.g. Professor)
 Class room namesClass room names
 Class room capacityClass room capacity
 Number of students taking a courseNumber of students taking a course
 Day and time of classesDay and time of classes

Classes(courseName, teacherName, teacherTitle, roomName, Classes(courseName, teacherName, teacherTitle, roomName,
#students, weekday, time, #seats) #students, weekday, time, #seats)

TitledT title

Course

name nrStudentsname

Of

Holds

Teacher

name

ISA

name

Class

hourweekdayweekday hour

In

Room

name nrSeatsname

TIn

FDsFDs
 courseName → teacherNamecourseName → teacherName (a course has only one responsible teacher) (a course has only one responsible teacher)

 courseName → #studentscourseName → #students (a course has only one number of students) (a course has only one number of students)

 teacherName → teacherTitleteacherName → teacherTitle (a teacher has at most one title, could be argued (a teacher has at most one title, could be argued
differently)differently)

 teacherName → roomNameteacherName → roomName (a teacher holds all classes in the same room, by the (a teacher holds all classes in the same room, by the
domain description)domain description)

 roomName → #seatsroomName → #seats (a room has only one number of seats) (a room has only one number of seats)

 courseName, weekday, hour → roomNamecourseName, weekday, hour → roomName (a course has only one class at the (a course has only one class at the
same time)same time)

 roomName, weekday, hour → courseNameroomName, weekday, hour → courseName (only one course at a time can be in a (only one course at a time can be in a
room)room)

 Note that the second to last is actually not needed, since we have courseName → Note that the second to last is actually not needed, since we have courseName →
teacherName, teacherName → roomName. teacherName, teacherName → roomName.

KeysKeys
 To find possible keys for the full relation, we need To find possible keys for the full relation, we need

to compute the closures of all attributes.to compute the closures of all attributes.

 A trick is that we don't need to look at attributes A trick is that we don't need to look at attributes
that never appear on the left-hand side of a FD, that never appear on the left-hand side of a FD,
since these can never give anything new.since these can never give anything new.

 Another trick is that we only need to look at Another trick is that we only need to look at
attribute sets that are supersets of some left-attribute sets that are supersets of some left-
hand side for some FD, since if the set was not a hand side for some FD, since if the set was not a
superset of some left-hand side then there would superset of some left-hand side then there would
be no FDs to follow! be no FDs to follow!

ClosuresClosures
 {courseName}+{courseName}+ = {courseName, teacherName, #students, teacherTitle, = {courseName, teacherName, #students, teacherTitle,

roomName, #seats}roomName, #seats}

 {teacherName}+{teacherName}+ = {teacherName, teacherTitle, roomName, #seats} = {teacherName, teacherTitle, roomName, #seats}

 {roomName}+{roomName}+ = {roomName, #seats} = {roomName, #seats}

 {courseName, teacherName}+{courseName, teacherName}+ = {courseName}+ = {courseName}+

 {courseName, roomName}+{courseName, roomName}+ = {courseName}+ = {courseName}+

 {teacherName, roomName}+{teacherName, roomName}+ = {teacherName}+ = {teacherName}+

 {courseName, weekday, hour}+{courseName, weekday, hour}+ = all attributes (only weekday and hour missing = all attributes (only weekday and hour missing
from {courseName}+)from {courseName}+)

 {roomName, weekday, hour}+{roomName, weekday, hour}+ = all attributes ({roomName, weekday, hour} = all attributes ({roomName, weekday, hour}
gives courseName, from there the rest)gives courseName, from there the rest)

 {teacherName, weekday, hour}+{teacherName, weekday, hour}+ = all attributes (teacherName gives = all attributes (teacherName gives
roomName, from there the rest)roomName, from there the rest)

Closures cont.Closures cont.
 The full set of FDs for this relation, i.e. the closure The full set of FDs for this relation, i.e. the closure

of F (F+), is thus:of F (F+), is thus:

– courseName → teacherName, #students, teacherTitle, courseName → teacherName, #students, teacherTitle,
roomName, #seatsroomName, #seats

– teacherName → teacherTitle, roomName, #seatsteacherName → teacherTitle, roomName, #seats

– roomName → #seatsroomName → #seats

– roomName, weekday, hour → courseName, roomName, weekday, hour → courseName,
teacherName, #students, teacherTitleteacherName, #students, teacherTitle

– teacherName, weekday, hour → courseName, #studentsteacherName, weekday, hour → courseName, #students

Now we decomposeNow we decompose
 Violation 1: Violation 1: courseName → teacherNamecourseName → teacherName

– R1(R1(courseNamecourseName, teacherName, #students, teacherTitle, , teacherName, #students, teacherTitle,
roomName, #seats) (i.e. the attributes in {courseName}roomName, #seats) (i.e. the attributes in {courseName}
+).+).

– R2(R2(courseNamecourseName, , weekdayweekday, , hourhour) (i.e. the remaining) (i.e. the remaining
attributes, plus courseName).attributes, plus courseName).

– A reference from R2.courseName to R1.courseNameA reference from R2.courseName to R1.courseName

 Violation 2 (in R1): Violation 2 (in R1): roomName → #seatsroomName → #seats
– R11(R11(roomNameroomName, #seats) (i.e. {roomName}+), #seats) (i.e. {roomName}+)
– R12(R12(courseNamecourseName, teacherName, #students, teacherTitle, , teacherName, #students, teacherTitle,

roomName) (i.e. the rest, plus roomName)roomName) (i.e. the rest, plus roomName)
– A reference from R12.roomName to R11.roomName A reference from R12.roomName to R11.roomName

More decompositionMore decomposition
 Violation 3 (in R12): Violation 3 (in R12): teacherName → teacherTitleteacherName → teacherTitle

– R121(R121(teacherNameteacherName, teacherTitle, roomName) (i.e. {teacherName}+ , teacherTitle, roomName) (i.e. {teacherName}+
restricted to R11 (meaning #seats no longer exists in R11)).restricted to R11 (meaning #seats no longer exists in R11)).

– R122(R122(courseNamecourseName, teacherName, #students) (i.e. the rest, plus , teacherName, #students) (i.e. the rest, plus
teacherName)teacherName)

– A reference from R122.teacherName to R121.teacherNameA reference from R122.teacherName to R121.teacherName

 We’re done!We’re done!

 Rooms(Rooms(roomNameroomName, #seats) (R11), #seats) (R11)
 Teachers(Teachers(teacherNameteacherName, teacherTitle, roomName) (R121) , teacherTitle, roomName) (R121)

roomName → Rooms.roomNameroomName → Rooms.roomName
 Courses(Courses(courseNamecourseName, teacherName, #students) , teacherName, #students)

teacherName → Teachers.teacherNameteacherName → Teachers.teacherName
 Classes(Classes(courseNamecourseName, , weekdayweekday, , hourhour) (R2)) (R2)

courseName → Courses.courseNamecourseName → Courses.courseName

Multivalued dependenciesMultivalued dependencies

 AA11…A…Ann→→→→BB11…B…Bmm

 Let’s call all the attributes that are Let’s call all the attributes that are
NOT in the As or Bs CNOT in the As or Bs C11…C…Ckk

 Then if two tuples have the same Then if two tuples have the same
AA11…A…Ann, you can switch the Bs or Cs , you can switch the Bs or Cs
”blockwise” between the tuples, and ”blockwise” between the tuples, and
the result will be an existing tuplethe result will be an existing tuple

A B C

A B C

MVD cont.MVD cont.

 AA11…A…Ann→→→→BB11…B…Bm m would therefore also mean would therefore also mean
AA11…A…Ann→→→→CC11…C…Ckk

 And all FDs are MVDsAnd all FDs are MVDs

Return of the JediHollywoodCarrie Fisher
Return of the JediMalibuCarrie Fisher

Star WarsHollywoodCarrie Fisher
Star WarsMalibuCarrie Fisher

MovieAddressActor

4NF4NF

 Sharpen BCNF a bitSharpen BCNF a bit
 IF whenever AIF whenever A11…A…Ann→→→→B is nontrivial B is nontrivial

on on RR, A, A11…A…Ann must be a must be a superkeysuperkey of of RR
 THEN THEN RR is in 4NF is in 4NF

 NontrivialNontrivial basically means that the basically means that the
As, Bs and Cs are As, Bs and Cs are non-overlappingnon-overlapping
and and non-emptynon-empty sets sets

How to do it?How to do it?

 Very similar procedure to making Very similar procedure to making
BCNFBCNF

 ……but I won’t steal the fun exercise but I won’t steal the fun exercise
from you from you

	Exercise 2
	Functional dependencies
	NB!
	Keys
	Problems that can arise
	Solution - BCNF
	How to get there
	Let’s try
	FDs
	Slide 10
	Closures
	Closures cont.
	Now we decompose
	More decomposition
	Multivalued dependencies
	MVD cont.
	4NF
	How to doit?

