
Database Usage

(and Construction)

SQL Queries and Relational Algebra

Views

Summary so far

• SQL is based on relational algebra.

– Operations over relations

• Operations for:

– Selection of rows (σ)

– Projection of columns (π)

– Combining tables

• Cartesian product (x)

• Join, natural join (⋈⋈⋈⋈C, ⋈⋈⋈⋈)

Subqueries

• Subqueries is a term referring to a query used
inside another query:

• Beware the natural join!!

• ”List all teachers who have lectures on Mondays in period 2”

• SQL is a language where any query can be written in lots of
different ways…

SELECT teacher

FROM GivenCourses NATURAL JOIN

(SELECT course, period

FROM Lectures

WHERE weekday = ’Mon’)

WHERE period = 2;

What does this query mean?

course period room weekday hour

TDA357 2 room1 Mon 8

TDA357 2 room1 Thu 8

TDA357 4 room3 Tue 8

TDA357 4 room3 Thu 13

TIN090 1 room4 Mon 8

TIN090 1 room3 Thu 13

SELECT course, period

FROM Lectures

WHERE weekday = ’Mon’

course period room weekday hour

TDA357 2 room1 Mon 8

TIN090 1 room4 Mon 8

SELECT course, period

FROM Lectures

WHERE weekday = ’Mon’

course period

TDA357 2

TIN090 1

course period teacher #students

TDA357 2 Niklas Broberg 130

TDA357 4 Rogardt Heldal 135

TIN090 1 Devdatt Dubashi 95

SELECT teacher

FROM GivenCourses NATURAL JOIN

(SELECT course, period

FROM Lectures

WHERE weekday = ’Mon’)

WHERE period = 2;

course period teacher #students

TDA357 2 Niklas Broberg 130

TIN090 1 Devdatt Dubashi 95

SELECT teacher

FROM GivenCourses NATURAL JOIN

(SELECT course, period

FROM Lectures

WHERE weekday = ’Mon’)

WHERE period = 2;

Result

teacher

Niklas Broberg

Renaming attributes

• Sometimes we want to give new names to
attributes in the result of a query.

– To better understand what the result models

are.

– In some cases, to simplify queries

SELECT *

FROM Courses NATURAL JOIN

(SELECT course as code, period, teacher

FROM GivenCourses);

Renaming relations

• Name the result of a subquery to be able
to refer to the attributes in it.

• Alias existing relations (tables) to make
referring to it simpler, or to disambiguate.

SELECT L.course, weekday, hour, room

FROM Lectures L, GivenCourses G, Rooms

WHERE L.course = G.course

AND L.period = G.period

AND room = name

AND nrSeats < nrStudents;

List all lectures that are scheduled in rooms with too
few seats.What does this query mean?

Renaming in Relational Algebra

• Renaming = Given a relation, give a new name

to it, and (possibly) to its attributes

– Rename R to A, and the attributes of R to the names

specified by X (must match the number of attributes).

– Leaving out X means attribute names stay the same.

– Renaming the relation is only necessary for

subqueries.

– ρ = rho = greek letter r = rename

ρA(X)(R)

Quiz!

Write a query that lists all courses that are
given in more than one period, with
different teachers.

SELECT A.course

FROM GivenCourses A, GivenCourses B

WHERE A.course = B.course

AND A.teacher <> B.teacher

AND A.period <> B.period;

Sequencing

• Easier to handle subqueries separately when

queries become complicated.

– Example: πX(R1 ⋈⋈⋈⋈C R2) could be written as

– In SQL:

R3 := R1 x R2
R4 := σC(R3)

R := πX(R4)

WITH

R3 AS (SELECT * FROM R1, R2),

R4 AS (SELECT * FROM R3 WHERE C)

SELECT X FROM R4;

• Example:

WITH DBLectures AS

(SELECT room, hour, weekday

FROM Lectures

WHERE course = ’TDA357’

AND period = 2)

SELECT weekday

FROM DBLectures

WHERE room = ’VR’;

Lists the days when the Databases course has

lectures in room VR during period 2.What does this query mean?

Creating views

• A view is a ”virtual table”, or ”persistent
query” – a relation defined in the database
using data contained in other tables.

• For purposes of querying, a view works
just like a table. The main difference is that
you can’t perform modifications on it – its
contents is defined by other tables.

CREATE VIEW viewname AS query

Example:

CREATE VIEW DBLectures AS

SELECT room, hour, weekday

FROM Lectures

WHERE course = ’TDA357’

AND period = 2;

SELECT weekday

FROM DBLectures

WHERE room = ’VR’;

The WHERE clause

• Specify conditions over rows.

• Can involve

– constants

– attributes in the row

– simple value functions (e.g. ABS, UPPER)

– subqueries

• Lots of nice tests to make…

Testing for membership

• Test whether or not a tuple is a member of
some relation.

tuple [NOT] IN subquery {or literal set}

SELECT course

FROM GivenCourses

WHERE period IN (1,4);

List all courses that

take place in the first or

fourth periods.

Quiz!

List all courses given by a teacher who also
gives the Databases course (TDA357).
(You must use IN…)

SELECT course

FROM GivenCourses

WHERE teacher IN

(SELECT teacher

FROM GivenCourses

WHERE course = ’TDA357’);

Testing for existence

• Test whether or not a relation is empty.

[NOT] EXISTS subquery

SELECT code, name

FROM Courses

WHERE EXISTS

(SELECT *

FROM Lectures

WHERE course = code);

e.g. List all courses that have lectures.

Note that code is in scope here since it is an attribute in the row being

tested in the outer ”WHERE” clause. This is called a correlated query.

Quiz!

List all courses that are not given in the
second period. (You must use EXISTS…)

SELECT code

FROM Courses

WHERE NOT EXISTS

(SELECT *

FROM GivenCourses

WHERE course = code

AND period = 2);

Ordinary comparisons

• Normal comparison operators like =, <, <>,
but also the special BETWEEN.

– Same thing as

value1 BETWEEN value2 AND value3

SELECT course

FROM GivenCourses

WHERE period BETWEEN 2 AND 3;

List all courses that

take place in the

second or third periods.

value2 <= value1 AND value1 <= value3

Comparisons with many rows

• Two operators that let us compare with all
the values in a relation at the same time.

tuple op ANY subquery {or literal set}

tuple op ALL subquery {or literal set}

SELECT course

FROM GivenCourses

WHERE period = ANY (1,4);

List all courses that

take place in the first or

fourth periods.

Quiz!

List the course(s) with the fewest number of
students (in any period). (You must use
ANY or ALL…)

SELECT course

FROM GivenCourses

WHERE nrStudents <= ALL

(SELECT nrStudents

FROM GivenCourses);

String comparisons

• Normal comparison operators like < use
lexicographical order.

– ’foo’ < ’fool’ < ’foul’

• Searching for patterns in strings:

– Two special pattern characters:

• _ (underscore) matches any one character.

• % matches any (possibly empty) sequence of

characters.

string LIKE pattern

Quiz!

List all courses that have anything to do with
databases (i.e. have the word Database in
their name).

SELECT *

FROM Courses

WHERE name LIKE ’%Database%’;

The NULL symbol

• Special symbol NULL means either

– we have no value, or

– we don’t know the value

• Use with care!

– Comparisons and other operations won’t

work.

– May take up unnecessary space.

Comparing values with NULL

• The logic of SQL is a three-valued logic –
TRUE, FALSE and UNKNOWN.

• Comparing any value with NULL results in
UNKNOWN.

• A row is selected if all the conditions in the
WHERE clause are TRUE for that row, i.e.
not FALSE or UNKNOWN.

Three-valued logic

• Rules for logic with unknowns:

– true AND unknown = unknown

– false AND unknown = false

– true OR unknown = true

– false OR unknown = unknown

– unknown AND/OR unknown = unknown

Unintuitive result

SELECT *

FROM Rooms

WHERE nrSeats > 10

OR nrSeats <= 10;

name nrSeats

VR NULL

Rooms

We don’t know

the value

UNKNOWN

UNKNOWN

UNKNOWN

Don’t expect the ”usual” results

• Laws of three-valued logic are not the
same as those for two-valued logic.

• Some laws hold, like commutativity of
AND and OR.

• Others do not:

p OR NOT p = true

Arithmetic in queries

• We allow arithmetic operations in queries.

• Not just arithmetic, but rather any
operations on values.

– Oracle has lots of pre-defined functions.

SELECT weekday, hour, room, course,

nrSeats – nrStudents as nrFreeSeats

FROM Rooms,

(Lectures NATURAL JOIN GivenCourses)

WHERE name = room;

Constants

• Constants can be used in projections.

– Beware of keywords…

SELECT code, name,

’Database course’ as comment

FROM Courses

WHERE name LIKE ’%Database%’;

code name comment

TDA357 Databases Databases course

Quiz!

What will the result of this query be?

SELECT 1

FROM Courses; code name

TDA357 Databases

TIN090 Algorithms

Courses

1

1

1

For each row in Courses that passes the test (all

rows since we have no test), project the value 1.

Aggregation

• Aggregation functions are functions that
produce a single value over a relation.

– SUM, MAX, MIN, AVG, COUNT…

SELECT MAX(nrSeats)

FROM Rooms;

SELECT COUNT(*)

FROM Lectures

WHERE room = ’VR’;

MAX actually has

Rooms as an implicit

argument!

Quiz!

List the room(s) with the highest number of
seats, and its number of seats.

NOT correct!
Error when trying to execute, why is it so?

SELECT name, MAX(nrSeats)

FROM Rooms;

Aggregate functions are special

• Compare the following:

– The ordinary selection/projection results in a
relation with a single attribute nrSeats, and
one row for each row in Rooms.

– The aggregation results in a single value, not
a relation.

– We can’t mix both kinds in the same query!
(almost…more on this later)

SELECT MAX(nrSeats)

FROM Rooms;

SELECT nrSeats

FROM Rooms;

name nrSeats

room1 10

room2 20

room3 55

room4 30

room5 34

SELECT nrSeats

FROM Rooms;

nrSeats

10

20

55

30

34

MAX(nrSeats)

55

name nrSeats

room1 10

room2 20

room3 55

room4 30

room5 34

SELECT MAX (nrSeats)

FROM Rooms;

NRSEATS

55

SELECT MAX (nrSeats) AS nrSeats

FROM Rooms;

Quiz! New attempt

List the room(s) with the highest number of seats,
and its number of seats.

Not correct either, will list all rooms, together with
the highest number of seats in any room.

Let’s try yet again…

SELECT name,

(SELECT MAX(nrSeats)

FROM Rooms)

FROM Rooms;

name nrSeats

room1 55

room2 55

room3 55

room4 55

room5 55

SELECT name,

(SELECT MAX(nrSeats)

FROM Rooms)

FROM Rooms;

name nrSeats

room1 10

room2 20

room3 55

room4 30

room5 34

Quiz! New attempt

List the room(s) with the highest number of seats,

and its number of seats.

Still not correct, MAX(nrSeats) is not a test over a

row so it can’t appear in the WHERE clause!

Let’s try yet again…

SELECT name, nrSeats

FROM Rooms

WHERE nrSeats = MAX(nrSeats);

Quiz!

List the room(s) with the highest number of
seats, and its number of seats.

That’s better!

SELECT name, nrSeats

FROM Rooms

WHERE nrSeats =

(SELECT MAX(nrSeats)

FROM Rooms);

Single-value queries

• If the result of a query is known to be a
single value (like for MAX), the whole
query may be used as a value.

• Dynamic verification, so be careful…

SELECT name, nrSeats

FROM Rooms

WHERE nrSeats =

(SELECT MAX(nrSeats)

FROM Rooms);

NULL in aggregations

• NULL never contributes to a sum, average
or count, and can never be the maximum
or minimum value.

• If there are no non-null values, the result
of the aggregation is NULL.

Summary – aggregation

• Aggregation functions: MAX, MIN, COUNT,

AVG, SUM

• Compute a single value over a whole relation.

• Can’t put aggregation directly in the WHERE

clause (since it’s not a function on values).

• Can’t mix aggregation and normal projection!

… well, not quite true…

Not quite true?

• Sometimes we want to compute an
aggregation for every value of some other
attribute.

– Example: List the average number of students

that each teacher has on his or her courses.

– To write a query for this, we must compute the

averaging aggregation for each value of

teacher.

Grouping

• Grouping intuitively means to partition a relation

into several groups, based on the value of some

attribute(s).

– ”All courses with this teacher go in this group, all

courses with that teacher go in that group, …”

• Each group is a sub-relation, and aggregations

can be computed over them.

• Within each group, all rows have the same value

for the attribute(s) grouped on, and therefore we

can project that value as well!

Grouping

• Grouping = given a relation R, a set of attributes

X, and a set of aggregation expressions G;

partition R into groups R1…Rn such that all rows

in Ri have the same value on all attributes in X,

and project X and G for each group.

– ”For each X, compute G”

– γ = gamma = greek letter g = grouping

γX,G(R)
SELECT X,G

FROM R

GROUP BY X;

Example: List the average number of students that

each teacher has on his or her courses.

SELECT teacher,

AVG(nrStudents)

FROM GivenCourses

GROUP BY teacher;

course per teacher nrSt.

TDA357 4 Rogardt Heldal 130

TDA590 2 Rogardt Heldal 70

TIN090 1 Devdatt Dubhashi 62

teacher AVG(nrSt.)

Rogardt Heldal 100

Devdatt Dubhashi 62

γteacher, AVG(nrStudents)(GivenCourses)

SQL?

Relational Algebra?

Result?

Specialized renaming of attributes

• General renaming operator, rename R to
A and its attributes to X :

• More convenient alternative for grouping,
rename the result of expression G to B:

– e.g.

– Works in normal projection (π) as well.

ρA(X)(R)

γX,G→B(R)
γteacher, AVG(nrStudents)→avgStudents(GivenCourses)

Summary – grouping and

aggregation

• Aggregation functions: MAX, MIN, COUNT,

AVG, SUM
– Compute a single value over a whole relation, or a partition of a

relation (i.e. a group).

– If no grouping attributes are given, the aggregation affects the
whole relation (and no ordinary attributes can be projected).

• Can’t put aggregation directly in the WHERE

clause (since it’s not a function on values).

• Can’t mix aggregation and normal projection!
– If an aggregation function is used in the SELECT clause, then

the only other things that may be used there are other
aggregation functions, and attributes that are grouped on.

Summary

• Complex queries, involving subqueries

– Renaming of relations and attributes

• Creating views

• Lots and lots of tests for the WHERE clause

– IN, EXISTS, BETWEEN, ALL, ANY, LIKE

• Arithmetic and other functions, constant values

• Aggregation functions

– more on these next time

