
Generalisation/Specialisation

• Subclass = sub-entity = special case.

• More attributes and/or relationships.

• A subclass shares the key of its parent.

• Drawn as an entity connected to the 
superclass by a special triangular 
relationship called ISA.                   
Triangle points to superclass.
– ISA = ”is a”



Example:

– A computer room is a room.

– Not all rooms are computer rooms.

– Computer rooms share the extra property that 
they have a number of computers.

Coursename

code

teacher

Room

name

#seatsClassesIn

ComputerRoom #computers

ISA



Subclass/Superclass Hierarchy

• We assume that subclasses form a tree 
hierarchy.

– A subclass has only one superclass.

– Several subclasses can share the same 

superclass.

• E.g. Computer rooms, lecture halls, chemistry labs 

etc. could all be subclasses of Room.

– One class can have several (orthogonal) 

subclass hierarchies.



Translating ISA to relations

• Three different approaches

– E-R: An ISA relationship is a standard one-to-”exactly 

one” relationship. Each subclass becomes a relation 

with the key attributes of the superclass included.

– NULLs: Join the subclass(es) with the superclass. 

Entities that are not part of the subclass use NULL for 

the attributes that come from the subclass.

– Object-oriented: Each subclass becomes a relation 

with all the attributes of the superclass included. An 

entity belongs to either of the two, but not both. 



The E-R approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)

ComputerRooms(name, #computers)

name -> Rooms.name

name #seats

VR 216

ED6225 52

name #computers

ED6225 26

What?



The NULLs approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats, #computers)

name #seats #computers

VR 216 NULL

ED6225 52 26

What?



The object-oriented approach:

Room

name

#seats

ComputerRoom

#computers

ISA

Rooms(name, #seats)

ComputerRooms(name, #seats,   

#computers)

name #seats

VR 216

name #seats #computers

ED6225 52 26

What?



Comparison

• E-R approach
– Good when searching for general information about 

all entities in the class hierarchy.
• ”List the number of seats in all rooms”

• OO approach
– Good when searching for information about entities in 

a subclass only.
• ”List the number of seats in all computer rooms”

• NULLs approach
– Could save space in situations where most entities in 

the hierarchy are part of the subclass (e.g. most 
rooms have computers in them).

– Reduces the need for joins (see later).



E-R summary

• Entities

• Attributes

• Relationships

– Multiplicity

• Weak entities

• Generalisation/specialisation

• Translation to relations



Scheduler database revisited

”We want a database for an application that 
we will use to schedule courses. …”

– Course codes and names, and the period the courses are given

– The number of students taking a course

– The name of the course responsible

– The names of all lecture rooms, and the number of seats in them

– Weekdays and hours of lectures



E-R diagram for Scheduler

In

code

name

Lecture

Of

weekday

hour

Given GivenCourse teacher

period #students

Course

Roomname

#seats



Translate to relations

Courses(code, name)

GivenCourses(course, period, #students, teacher)

course -> Courses.code

Lectures(course, period, room, weekday, hour)

(course, period) -> GivenCourses.(course, period)

room             -> Rooms.name

Rooms(name, #seats)

Compare with the ”good” one from the 
previous lecture – we’ve reached the 
same conclusion using the structured 
and well-defined method.



Exam – E-R diagrams

”A small train company wants to design a booking system 

for their customers. …”

• Given the problem description above, construct an E-R 

diagram.

• Translate the E-R diagram into a database schema.



Programming Assignment

• Write a ”student portal” application in Java
– Part I: Design

• Given a domain description, design a database schema 
using an E-R diagram and functional dependencies.

– Part II: Construction and Usage

• Implement the schema from Part I in Oracle. 

• Insert relevant data.

• Create views.

– Part III: Construction

• Create triggers. 

– Part IV: Interfacing from external Application

• Write a Java application that uses the database from Part III.



Programming Assignment

• Each task must be completed and 
approved before the next can be started.

– Submit in good time!

• Preferrably, work in pairs.



System Specification

• Your final application should have the following 

functionality:

– Info: A student should be able to ask the system for 

info about herself, including what courses she has 

read or is registered to.

– Register: A student should be able to register for a 

course. If there is no room on the course, she should 

be put in a waiting list.

– Unregister: A student should be able to withdraw a 

registration. If some other student is on the waiting 

list, that student should be registered instead.



Part I - Design

• Design the database schema by drawing 
an E-R diagram of the domain, and then 
translating your diagram to relations.

• Verify your schema by identifying all 
functional dependencies that you expect to 
hold on the domain, and check them 
against the schema.



Part I - Design

• Hand in: 

– a diagram

– a database schema

– the FDs of the domain

– a text report where you argue the correctness

of your solution.

• Submission deadline: 18 November 2014



Database design II

Functional Dependencies

BCNF



Design theory for relational 

databases
• Offers ways to “improve” a relational 

design

• (“improve” usually means reducing the 
amount of redundancy)

• Chapter 3 of the textbook introduces the 
concepts:

– functional dependencies

– normalization



Functional dependencies (FDs)

• X → A

– ”X determines A”, ”X gives A”

– ”A depends on X”

• X is a set of attributes, A is a single 
attribute

• Examples:

– code→ name

– code, period→ teacher



Why ”functionally” dependent?

• X → A is a (deterministic) function from X 
to A. Given values for the attributes in the 
set X, we get the value of A.

• Example:

– code→ name

– imagine a function f(code) which returns the 

name associated with a given code.



A note on syntax

• A functional dependency exists between 

attributes in the same relation

e.g. in relation Courses we have FD:

code→ name

• A reference exists between attributes in two 

different relations, e.g. for relation GivenCourses 

we have reference:

course -> Courses.code

• Two completely different things, but with similar 

syntax. Clear from the context which is intended.



Assertions on a schema

• X → A is an assertion about a schema R

– If two tuples in R agree on the values of the 

attributes in X, then they must also agree on 

the value of A.

• Example: code, period→ teacher

– If two tuples in the GivenCourses relation 

have the same course code and period, then 

they must also have the same teacher.



Quiz!

What are reasonable FDs for the scheduler domain?

Schedules(code, name, period, #students,

teacher, room, #seats, weekday, hour)

code name per. #st teacher room #seats day hour

TDA357 Databases 2 87 Niklas Broberg VR 216 Monday 13:15

TDA357 Databases 2 87 Niklas Broberg HB1 184 Thursday 10:00

TDA357 Databases 4 93 Rogardt Heldal HB1 184 Tuesday 08:00

TDA357 Databases 4 93 Rogardt Heldal HB1 184 Friday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HC1 126 Wednesday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HA3 94 Thursday 13:15



Quiz: (an) answer

What are reasonable FDs for the 

scheduler domain?

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code



Where do FDs come from?

• ”Keys” of entities
– If code is the key for the entity Course, then all other 

attributes of Course are functionally determined by 
code, e.g. code → name

• Relationships
– If all courses hold lectures in just one room, then the 

key for the Course entity also determines all attributes 
of the Room entity, e.g. 
code→ room

• Physical reality
– No two courses can have lectures in the same room 

at the same time, e.g. 
room, period, weekday, hour→ code



Multiple attributes on RHS

• X → A,B 

– Short for X → A and X → B

– If we have both X → A and X → B, we can 

combine them to X → A,B.

– course, period → teacher, #students

• Multiple attributes on LHS can be crucial!

– course, period → teacher

•course → teacher

•period → teacher



Quiz!

• What’s the difference between the LHS of 
a FD, and a key?

– both uniqely determine the values of other 

attributes.

– …but a key must determine all other attributes 

in a relation!

– We use FDs when determining keys of 

relations (will see how shortly).



Trivial FDs

• A FD is trivial if the attribute on the RHS is 
also on the LHS.

– Example: course, period → course

Quiz: Is this a trivial FD?

course, period→ course, name

Shorthand for

course, period→ course (trivial)

course, period→ name (not trivial)



Armstrong’s axioms

Suppose X, Y and Z are sets of attributes in 

relation R.

1. Reflexivity.

If Y is a subset of X, then X → Y is a trivial FD.

2. Augmentation.

If X → Y holds, then XZ → YZ holds.

3. Transitivity.

If X → Y and Y → Z hold, then X → Z holds.



Basis

Suppose S is a set of FDs that hold for a 
given relation.

• A basis for S is any set of FDs that is 
equivalent to S.

• S and B are equivalent if and only if          
S follows from B and B follows from S.



Minimal basis

B is  a minimal basis if:

1.All FDs in B have a single attribute on the right 

side.

2.The result of removing any FD from B is not a 

basis.

3.The result of removing any attribute from the 

left side of any FD in B is not a basis.



Closure of a set of attributes

• Computing the closure of X means finding 
all FDs that have X as the LHS.

• If A is in the closure of X, then X → A.

• The closure of X is written X+.



Computing the closure

• Given a set of FDs, F, and a set of 
attributes, X:

1. Start with X+ = X.

2. For all FDs Y → B in F where Y is a subset of X+, 

add B to X+.

3. Repeat step 2 until there are no more FDs that 

apply.



Quiz!

What is the closure of 
{code, period, weekday}?

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

{code, period, weekday}+ =

{code, period, weekday, name, #students, 

teacher, hour, room, #seats}



What are FDs really?

• Functional dependencies represent a 
special kind of constraints of a domain –
dependency constraints.

• We can use FDs to verify that our design 
indeed captures the constraints we expect.



Finding keys

• For a relation R, any subset X of attributes of R 
such that X+ contains all the attributes of R is a 
superkey of R.
– Intuitively, a superkey is any set of attributes that 

determine all other attributes.

– The set of all attributes is a superkey.

• A key for R is a minimal superkey.
– A superkey X is minimal if no proper subset of X is 

also a superkey.
• Minimal – no subset is a key

• Minimum – the smallest, i.e. the one with the fewest number 
of attributes



Using attribute closures to find all 

FDs, superkeys and keys (1)

Suppose we have relation R(A,B,C) and FDs      
AB → C and C → A.

A systematic way to find all other FDs is to 
consider the closures of all sets of attributes:

{A}+ = {A} {A,B}+ = {A,B,C} {A,B,C}+ = {A,B,C}

{B}+ = {B} {A,C}+ = {A,C}

{C}+ = {A,C} {B,C}+ = {A,B,C}

One extra (non-trivial) FD: BC → A



Using attribute closures to find all 

FDs, superkeys and keys (2)
{A}+ = {A} {A,B}+ = {A,B,C} {A,B,C}+ = {A,B,C}

{B}+ = {B} {A,C}+ = {A,C}

{C}+ = {A,C} {B,C}+ = {A,B,C}

• Superkeys: {A,B}, {B,C}, {A,B,C}

• Keys: {A,B}, {B,C}

• {A,B,C} is not a key, since subset(s) of it’s 
attributes are (super)keys.



Primary keys

• There can be more than one key for the 
same relation.

• We choose one of them to be the primary 
key, which is the key that we actually use 
for the relation.

• Other keys could be asserted through 
uniqueness constraints.

– E.g. for the self-referencing relation 



Example:

Rooms(name, #seats)

NextTo(right, left)

right -> Rooms.name

left  -> Rooms.name

left unique

For NextTo we have both

• left → right

• right → left

Both left and right are keys, but we have chosen 

right to be the primary key for NextTo. We can add a 

constraint stating that left should be unique.

Note: The syntax for constraints is not well specified. Both 

the reference syntax, as well as the uniqueness assertion, 

are my suggestions only (but they’re rather good).



Quiz!

What is the key of Schedules?

code → name

code, period → #students

code, period → teacher

room → #seats

code, period, weekday → hour

code, period, weekday → room

room, period, weekday, hour → code

Schedules(code, name, period, #students,

teacher, room, #seats, weekday, hour)



Example:

• X = {code, period, weekday, hour}

is a superkey of the relation Schedules since X+ is 

the set of all attributes of Schedules.
• However, Y = {code, period, weekday}

is also a superkey, and is a subset of X, so X is 

not a key of Schedules.

• No subset of Y is a superkey, so Y is also a key.

Two keys exist:

{code, period, weekday}

{room, period, weekday, hour}



Make reality match theory

• In some cases reality is not suitably 
deterministic. We may need to invent key 
attributes in order to have a key at all.

Quiz: Give examples of this phenomenon from reality!

Social security numbers, course codes, product numbers, 

user names etc.



Quiz time!

What’s wrong with this schema?

Courses(code, period, name, teacher)

{(’TDA356’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA356’, 4, ’Databases’, ’Rogardt Heldal’)}

Redundancy!

code→ name

code, period→ teacher



Using FDs to detect anomalies

• Whenever X → A holds for a relation R, 
but X is not a key for R, then values of A 
will be redundantly repeated!

Courses(code, period, name, teacher)

{(’TDA356’, 2, ’Databases’, ’Niklas Broberg’),

(’TDA356’, 4, ’Databases’, ’Rogardt Heldal’)}

code→ name

code, period→ teacher

Quiz: What kind of anomaly could this relational schema lead to?



Next Lecture

BCNF decomposition

3NF, 4NF


