
Database design

The Entity-Relationship model

Naive approach

• Not using a structured design method
means it’s easy to make errors.

• Learn from the mistakes of others, then
you won’t have to repeat them yourself!

Scheduler database

”We want a database for an application that

we will use to schedule courses. …”

– Course codes and names, and the period the courses are given

– The number of students taking a course

– The name of the course responsible

– The names of all lecture rooms, and the number of seats in them

– Weekdays and hours of lectures

First attempt

– Course codes and name, and the period the course is given

– The number of students taking a course

– The name of the course responsible

– The names of all lecture rooms, and the number of seats in them

– Weekday and hour of lectures

Schedules(code, name, period, numStudents,

teacher, room, numSeats, weekday, hour)

Quiz: What’s a key of this relation?

First attempt

Schedules(code, name, period, numStudents, teacher,

room, numSeats, weekday, hour)

code name per. #st teacher room #seats day hour

TDA357 Databases 2 87 Niklas Broberg VR 216 Monday 13:15

TDA357 Databases 2 87 Niklas Broberg HB1 184 Thursday 10:00

TDA357 Databases 4 93 Rogardt Heldal HB1 184 Tuesday 08:00

TDA357 Databases 4 93 Rogardt Heldal HB1 184 Friday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HC1 126 Wednesday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HA3 94 Thursday 13:15

Quiz: What’s wrong with this approach?

Anomalies

• Redundancy – same thing stored several times

• Update anomaly – we must remember to update all tuples

• Deletion anomaly – if no course has lectures in a room,
we lose track of how many seats it has

code name per. #st teacher room #seats day hour

TDA357 Databases 2 87 Niklas Broberg VR 216 Monday 13:15

TDA357 Databases 2 87 Niklas Broberg HB1 184 Thursday 10:00

TDA357 Databases 4 93 Rogardt Heldal HB1 184 Tuesday 08:00

TDA357 Databases 4 93 Rogardt Heldal HB1 184 Friday 13:15

TIN090 Algorithms 1 64 Devdatt Dubhashi HC1 126 Wednesday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi HA3 94 Thursday 13:15

Second attempt

Rooms(room, numSeats)

Lectures(code, name, period, numStudents, teacher,

weekday, hour)

code name per #st teacher day hour

TDA357 Databases 2 87 Niklas Broberg Monday 13:15

TDA357 Databases 2 87 Niklas Broberg Thursday 10:00

TDA357 Databases 4 93 Rogardt Heldal Tuesday 08:00

TDA357 Databases 4 93 Rogardt Heldal Friday 13:15

TIN090 Algorithms 1 64 Devdatt Dubhashi Wednesday 08:00

TIN090 Algorithms 1 64 Devdatt Dubhashi Thursday 13:15

room #seats

VR 216

HB1 184

HC1 126

HA3 94

Lost connection between Rooms and Lectures!

… and still there’s redundancy in Lectures

Better? No!

Third attempt

Rooms(room, numSeats)

Courses(code, name)

CourseStudents(code, period, numStudents)

CourseTeachers(code, period, teacher)

Lectures(code, period, room, weekday, hour)

room #seats

VR 216

HB1 184

HC1 126

HA3 94

code name

TDA357 Databases

TIN090 Algorithms

code per #st

TDA357 2 87

TDA357 4 93

TIN090 1 64

code per teacher

TDA357 2 Niklas Broberg

TDA357 4 Rogardt Heldal

TIN090 1 Devdatt Dubhashi

code per room day hour

TDA357 2 VR Monday 13:15

TDA357 2 HB1 Thursday 10:00

TDA357 4 HB1 Tuesday 08:00

TDA357 4 HB1 Friday 13:15

TIN090 1 HC1 Wednesday 08:00

TIN090 1 HA3 Thursday 13:15

Fourth attempt

Rooms(room, numSeats)

Courses(code, name)

CoursePeriods(code, period, numStudents, teacher)

Lectures(code, period, room, weekday, hour)

room #seats

VR 216

HB1 184

HC1 126

HA3 94

code name

TDA357 Databases

TIN090 Algorithms

code per #st teacher

TDA357 2 87 Niklas Broberg

TDA357 4 93 Rogardt Heldal

TIN090 1 64 Devdatt Dubhashi

code per room day hour

TDA357 2 VR Monday 13:15

TDA357 2 HB1 Thursday 10:00

TDA357 4 HB1 Tuesday 08:00

TDA357 4 HB1 Friday 13:15

TIN090 1 HC1 Wednesday 08:00

TIN090 1 HA3 Thursday 13:15

Yes, this is good!

Things to avoid!

• Redundancy

• Unconnected relations

• Too much decomposition

The Entity-Relationship approach

• Design your database by drawing a picture
of it – an Entity-Relationship diagram

– Allows us to sketch the design of a database

informally (which is good when communi-

cating with customers)

• Use (more or less) mechanical methods to
convert your diagram to relations.

– This means that the diagram can be a formal

specification as well

Entities and entity sets

• Entity = ”thing” or object

– course, room etc.

• Entity set = collection of similar entities

– all courses, all rooms etc.

• Entities are drawn as rectangles

Course

Attributes

• Entities have attributes.

• All entities in an entity set have the same
attributes (though not the same values)

• Attributes are drawn as ovals connected to
the entity by a line.

Example:

• A course has three attributes – the unique course code,

a name and the name of the teacher.

• All course entities have values for these three attributes,

e.g. (TDA357, Databases, Niklas Broberg).

Coursename

code

Keys are
underlined

teacher

Translation to relations

• An E-R diagram can be mechanically
translated to a relational database schema.

• An entity becomes a relation, the attributes
of the entity become the attributes of the
relation, keys become keys.

Coursename

code

Courses(code, name, teacher)

teacher

What?

A note on naming policies

• My view: A rectangle in an E-R diagram
represents an entity, hence it is put in
singular (e.g. Course).

– Fits the intuition behind attributes and

relationships better.

• The book: A rectangle represents an entity
set, hence it is put in plural (e.g. Courses)

– Easier to mechanically translate to relations.

Relationships

• A relationship connects two (or more)
entities.

• Drawn as a diamond between the related
entities, connected to the entities by lines.

• Note: Relationship ≠ Relation!!

Example:

• A course has lectures in a room.

• A course is related to a room by the fact that the course has lectures
in that room.

• A relationship is often named with a verb (e.g. HasLecturesIn)

Coursename

code

teacher

Room

name

#seatsLecturesIn

Translation to relations

• A relationship between two entities is
translated into a relation, where the
attributes are the keys of the related
entities.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Courses(code, name, teacher)

Rooms(name, #seats)

LecturesIn(code, name)What?

References

• We must ensure that the codes used in
LecturesIn matches those in Courses.

– Introduce references between relations.

– e.g. the course codes used in LecturesIn

reference those in Courses.

Courses(code, name, teacher)

Rooms(name, #seats)

LecturesIn(code, name)

Courses(code, name, teacher)

Rooms(name, #seats)

LecturesIn(code, name)

code -> Courses.code

name -> Rooms.name
References

”Foreign” keys

• Usually, a reference points to the key of
another relation.

– E.g. name in LecturesIn references the key

name in Rooms.

– name is said to be a foreign key in

LecturesIn.

Relationship (non-)keys

• Relationship relations have no key
attributes of their own!

– The ”key” of a relationship relation is the

combined keys of the related entities

– Follows from the fact that entities are either

related or not.

– If you at some point think it makes sense to

put a key on a relationship, it should probably

be an entity instead.

Quiz

Suppose we want to store the number of
times that each course has a lecture in a
certain room. How do we model this?

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

Attributes on relationships

• Relationships can also have attributes.

• Represent a property of the relationship
between the entities.

– E.g. #times is a property of the relationship

between a course and a room.

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

Translation to relations

• A relationship between two entities is translated

into a relation, where the attributes are the keys

of the related entities, plus any attributes of the

relationship.

Courses(code, name, teacher)

Room(name, #seats)

LecturesIn(code, name, #times)

code -> Courses.code

name -> Rooms.name

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

What?

Quiz

Why could we not do the same for weekday?

• Not a property of the relationship – a course can have
lectures in a given room on several weekdays!

• A pair of entities are either related or not.

Coursename

code

teacher

Room

name

#seatsLecturesIn

weekday

Multiway relationships

• A course has lectures in a given room on
different weekdays.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Weekday

day

• Translating to relations:

Coursename

code

teacher

Room

name

#seatsLecturesIn

Weekday

day

Courses(code, name, teacher)

Rooms(name, #seats)

Weekdays(day)

LecturesIn(code, name, day)

code -> Courses.code

name -> Rooms.name

day -> Weekdays.day

What?

Many-to-many relationships

• Many-to-many (n-to-m, N-M) relationships

– Each entity in either of the entity sets can be

related to any number of entities of the other

set.

– A course can have lectures in many rooms.

– Many courses can have lectures in the same room.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Many-to-one relationships

• Many-to-one (n-to-1, N-1) relationships

– Each entity on the ”many” side can only be

related to (at most) one entity on the ”one”

side.

– Courses have all their lectures in the same room.

– Many courses can share the same room.

Coursename

code

teacher

Room

name

#seatsResidesIn

Arrow means
”at most one”

Many-to-”exactly one”

• All entities on the ”many” side must be
related to one entity on the ”one” side.

– This is also known as total participation

– Courses have all their lectures in some room.

– Many courses can share the same room.

Coursename

code

teacher

Room

name

#seatsResidesIn

Rounded arrow
means ”exactly one”

One-to-one relationships

• One-to-one (1-to-1, 1-1) relationships
– Each entity on the either side can only be

related to (at most) one entity on the other
side.

– Courses have all their lectures in the same room.

– Only one course in each room.

– Not all rooms have courses in them.

Coursename

code

teacher

Room

name

#seatsResidesIn

Translating multiplicity

• A many-to-many relationship between two
entities is translated into a relation, where
the attributes are the keys of the related
entities, and any attributes of the relation.

Courses(code, name, teacher)

Rooms(name, #seats)

LecturesIn(code, name, #times)

code -> Courses.code

name -> Rooms.name

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

Translating multiplicity

• A N-to-”exactly one” relationship between
two entities is translated as part of the
”many”-side entity.

Coursename

code

teacher

Room

name

#seatsResidesIn

Courses(code, name, teacher, room)

room -> Rooms.name

Rooms(name, #seats)
What?

How do we translate an N-to-one (meaning
”at most one”) relationship?

or ?

Quiz

Coursename

code

teacher

Room

name

#seatsResidesIn

Courses(code, name, teacher, room)

Room(name, #seats)

Courses(code, name, teacher)

Room(name, #seats)

ResidesIn(code, room)

Aside: the NULL symbol

• Special symbol NULL means either
– we have no value, or

– we don’t know the value

• Use with care!
– Comparisons and other operations won’t

work.

– May take up unnecessary space.

Translation comparison

– Will lead to NULLs for courses that have no room.

– Typically used when not having a room is the

exception to the rule.

Courses(code, name, teacher, room)

Rooms(name, #seats)

Courses(code, name, teacher)

Rooms(name, #seats)

ResidesIn(code, room)

– No NULLs anywhere.

– May lead to much duplication of the course code.

– Typically used when having a room is the exception to

the rule.

Note that ”name”
is not a key here

Bad E-R design

Coursename

code

teacher

Room

name

#seatsResidesIn

room

• Room is a related entity – not an attribute as well!

Attribute or related entity?

What about teacher? Isn’t that an entity?

Coursename

code

Room

name

#seatsResidesIn

Teacher

HeldBy

name

Quiz!

When should we model something as an
entity in its own right (as opposed to an
attribute of another entity)?

At least one of the following should hold:

• Consists of more than a single (key) attribute

• Used by more than one other entity

• Part of an X-to-many relation as the many side

• Generally entity-ish, is important on its own

Relationships to ”self”

• A relationship can exist between entities of
the same entity set.

• Use role annotations for attributes.

Room

name

#seats

NextTo

left right

Rooms(name, #seats)

NextTo(left, right)

left -> Rooms.name

right -> Rooms.name

Quiz!

How would we add study periods to this
diagram?

• Teacher can vary depending on period, but name will not.

• Rooms for lectures can vary depending on period.

Coursename

code

teacher

Room

name

#seatsLecturesIn

Weak entities

• Some entities depend on other entities.
– A course is an entity with a code and a name.

– A course does not have a teacher, rather it
has a teacher for each time the course is
given.

– We introduce the concept of a given course,
i.e. a course given in a particular period. A
given course is a weak entity, dependent on
the entity course. A given course has a
teacher.

Weak entities

• A weak entity is an entity that depends on

another entity for help to be ”uniquely” identified.

– E.g. an airplane seat is identified by its number, but is

not uniquely identified when we consider other

aircraft. It depends on the airplane it is located in.

• Drawn as a rectangle with double borders.

• Related to its supporting entity by a supporting

relationship, drawn as a diamond with double

borders. This relationship is always many-to-

”exactly one”.

Weak entities in E-R diagrams

Example:

GivenCourse

teacher

Room

name

#seatsLecturesIn

Course

code

name

period

Given

discriminator
(sometimes
dotted line)

Courses(code, name)

GivenCourses(course, period, teacher)

course -> Courses.code

LecturesIn(course, period, room)

(course, period) -> GivenCourses.(course, period)

room -> Rooms.name

Rooms(name, #seats)

What?

Translating to relations:

GivenCourse

teacher

Room

name

#seatsLecturesIn

Course

code

name

period

Given

Multiway relationships as WEs

• Multiway relationships can be transformed
away using weak entities

– Subtitute the relationship with a weak entity.

– Insert supporting relationships to all entities

related as ”many” by the original relationship.

– Insert ordinary many-to-one relationships to

all entities related as ”one” by the original

relationship.

Example:

Coursename

code

teacher

Room

name

#seatsLecturesIn

Weekday

day

Room

name

#seats

In

On

Of

Coursename

code

teacher

Weekday

day

LectureIn

What’s the point?

• Usually, relationships work just fine, but in
some special cases, you need a weak
entity to express all multiplicity constraints
correctly.

• A weak entity is needed when a part of an
entity’s key is a foreign key.

Multivalued Attributes

• If an attribute can have more than one
value it is called multivalued:

Only single-valued attributes allowed:

Courses(code, name)

Teachers(code,t_name)

code -> Courses.code

Rooms(name, #seats)

LecturesIn(code, name, #times)

code -> Courses.code

name -> Rooms.name

Coursename

code

teacher

Room

name

#seatsLecturesIn

#times

Next lecture

More on E-R Modelling

Functional Dependencies

BCNF

