

	th	u ia thi	0.000	atio	n (naive colution)?
	Josti	y is thi	s oper	alio	n (naive solution)?
course	per	weekday	hour	room	
TDA356	2	VR	Monday	13:15	
TDA356	2	VR	Thursday	08:00	
TDA356	4	HB1	Tuesday	08:00	
TDA356	4	HB1	Friday	13:15	1 ("
TIN090	1	HC1	Wednesday	08:00	
TIN090	1	HA3	Thursday	13:15	1
SELECT * FROM Lectures WHERE course = 'TDA356' AND period = 2:			TDA356'	Go th with the perio	nrough all <i>n</i> rows, compare the values for course and d = 2 <i>n</i> comparisons

Typical costs

- Some typical costs of disk accessing for database operations on a relation stored over n blocks:
 - Query the full relation: n (disk operations)
 - Query with the help of index: k, where k is the number of blocks pointed to (1 for key).
 - Access index: 1
 - Insert new value: 2 (one read, one write)
 - Update index: 2 (one read, one write)

Example:

```
SELECT *
FROM Lectures
WHERE course = 'TDA356'
AND period = 2;
```

Assume Lectures is stored in n disk blocks. With no index to help the lookup, we must look at all rows, which means looking in all n disk blocks for a total cost of n.

With an index, we find that there are 2 rows with the correct values for the course and period attributes. These are stored in two different blocks, so the total cost is 3 (2 blocks + reading index).

Quiz!

How costly is this operation?

SELECT * FROM Lectures, Courses WHERE course = code;

No index: Go through all *n* blocks in Lectures, compare the value for course from each row with the values for code in all rows of Courses, stored in all *m* blocks. The total cost is thus **n** * **m** accessed disk blocks. Lectures: n disk blocks Courses: m disk blocks

Index on code in Courses: Go through all *n* blocks in Lectures, compare the value for course from each row with the index. Since course is a key, each value will exist at most once, so the cost is $2^*n + 1$ accessed disk blocks (1 for fetching the index once).

CREATE INDEX

- Most DBMS support the statement CREATE INDEX index name ON table (attributes);
 - Example:
 - CREATE INDEX courseIndex ON Courses (code);
 - Statement not in the SQL standard, but most DBMS support it anyway.
 - Primary keys are given indexes implicitly (by the SQL standard).

Important properties

- Indexes are separate data stored by itself.
 Can be created
 - ✓ on newly created relations
 - ✓ on existing relations
 - will take a long time on large relations.
 - will take a long time of large relations.
 - Can be dropped without deleting any table data.
- SQL statements do not have to be changed
 - a DBMS automatically uses any indexes.

Quiz!

Why don't we have indexes on all attributes for faster lookups?

- Indexes require disk space.
- Modifications of tables are more expensive.
- Need to update both table and index.
- Not always useful
 - The table is very small.
- We don't perform lookups over it (Note: lookups ≠ queries).
- Using an index costs extra disk block accesses.

Rule of thumb

- Mostly queries on tables use indexes for key attributes.
- Mostly updates be careful with indexes!

Example: Suppose that the Lectures relation is stored in 20 disk blocks, and that we typically perform three operations on this table:

- insert new lectures (Ins)
- list all lectures of a particular course (Q1)
- list all lectures in a given room (Q2)

Let's assume that in an average week there are: - 2 lectures for each course, and 10 lectures in each many

- 10 lectures in each room.
- Let's also assume that
 - each course has lectures stored in 2 blocks, and
 - each room has lectures stored in 7 (some lectures are stored in the same block).

	Cos	sts	List all lectures of a particular course (Q1 List all lectures in a given room (Q2)				
	Case A		Case B		Case C	Case D	
	No index	l (course,	ndex on period, week	(day)	Index on room	Both indexe	
Ins	2	4			4	6	
Q1	20	3			20	3	
Q2	20	20			8	8	
he amo	ortized cost de	epends on t	he proportio	n of ope	rations of e	each kind.	
	. UI	42	Case A	Case	B Case	C Case D	
0.2	0.4	0.4	16.4	10	12	5.6	
~ ~ ~	0.1	0.1	F C		<u> </u>	5.0	
0.8	0.1	0.1	0.0	5.5	ю	5.9	

KBB056		→ KBB056	KC	Monday	08	-
TDA357		KMB017	MVH12	Tuesday	08	<u> </u>
UMF012	$\Box $	KMB017	MVH12	Wednesday	15	-
		TDA357	HA4	Monday	10	_
		TDA357	HB1	Thursday	10	-
		TMS145	KC	Friday	08	-
		UMF012	MVF23	Friday	13	-
		UMF012	MVF23	Monday	13	-
		UMF018	MVF23	Tuesday	10	

Quiz!

- Indexes are incredibly useful (although they are not part of the SQL standard).
- Doing it wrong is costly.
- Requires knowledge about the internals of a DBMS.
- How is data stored? How large is a block?
- A DBMS should be able to decide better than the user what indexes are needed, from usage analysis.

So why don't they??

Summary – indexes

- Indexes make certain lookups and joins more efficient.
 - Disk block access matters.
 - Multi-attribute indexes
- CREATE INDEX
- · Dense, sparse, multi-level and secondary
- · Usage analysis
 - What are the expected operations?
 - How much do they cost?
 - Σ (cost of operation)x(proportion of operations of that kind)

1 means lots of NULLs, 2 means we must introduce a new table. Seems overkill for such an easy task...

Semi-structured data (SSD)

- More flexible data model than the relational model.
 - Think of an object structure, but with the type of each object its own business.
 - Labels to indicate meanings of substructures.
- Semi-structured: it is structured, but not everything is structured the same way!

- Nodes = "objects", "entities"
- Edges with labels represent attributes or relationships.
- · Leaf nodes hold atomic values.
- · Flexibility: no restriction on
 - Number of edges out from a node.
 - Number of edges with the same label
 - Label names

Relationships in SSD graphs

- Relationships are marked by edges to some node, that doesn't have to be a child node.
 - This means a SSD graph is not a tree, but a true graph.
 Cyclic relationships possible
 - Cyclic relationships possible.
- Using relationships, it is possible to directly mimic the behavior of the relational model.
 - Graph is three levels deep one for a relation, the second for its contents, the third for the attributes.
 References are inserted as relationship edges.
- SSD is a generalization of the relational model!

Schemas for SSD

- Inherently, semi-structured data does not have schemas.
 - The type of an object is its own business.The schema is given by the data.
- We can of course restrict graphs in any way we like, to form a kind of "schema".
 - Example: All "course" nodes must have a "code" attribute.

XML

- XML = eXtensible Markup Language
- Derives from document markup languages.
 - Compare with HTML: HTML uses "tags" for formatting a document, XML uses "tags" to describe semantics.
- Key idea: create tag sets for a domain, and translate data into properly tagged XML documents.

XML vs SSD

- XML is a language that describes data and its structure.
 - Cf. relational data: SQL DDL + data in tables.
- The data model behind XML is semistructured data.
 - Using XML, we can describe an SSD graph as a tagged document.

What's wrong with this XML document?

Quiz!

<Course code="TDA357"> <GivenIn period="2" > <GivenIn period="4" > </Course>

No end tags provided for the GivenIn elements! We probably meant e.g. <GivenIn ... />

What about the name of the course? Teachers?

Well-formed and valid XML

- Well-formed XML directly matches semistructured data:
 - Full flexibility no restrictions on what tags can be used where, how many, what attributes etc.
 - Well-formed means syntactically correct.
 E.g. all start tags are matched by an end tag.
- Valid XML involves a schema that limits what labels can be used and how.

Well-formed XML

- A document must start with a *declaration*, surrounded by <? ... ?>
 - Normal declaration is:
 - <?xml version="1.0" standalone="yes" ?>
 - ... where standalone means basically "no schema provided".
- Structure of a document is a *root element* surrounding well-formed sub-documents.

DTDs

- DTD = Document Type Definition
- A DTD is a schema that specifies what elements may occur in a document, where they may occur, what attributes they may have, etc.
- Essentially a context-free grammar for describing XML tags and their nesting.

<pre>cogning of doublet with of D encoding="utf-8" standalone="no" ?> <ldoctype [<br="" scheduler="">(ELEMENT Scheduler (Courses, Rooms)> (ELEMENT Courses (Course*)> (ELEMENT Course (Course*)> (ELEMENT Gourse (Course*)> (ELEMENT Gourse (Course*)> (ELEMENT Gourse (Course*)> (ELEMENT Gourse (Course*)> (ELEMENT Gourse (Course*)> (ELEMENT Gourse EMETY> (ELEMENT Gourse EMETY> (ELEMENT Gourse (Course*)> (ILTLIST COurse code ID #REQUIRED name CDATA #REQUIRED nafudents CDATA #REQUIRED teacher CDATA #REQUIRED hour CDATA #REQUIRED</ldoctype></pre>	<pre>Scheduler> <gscheduler> <gourses> <courses code="TDA357" name="Databases"> divenin period="2" teacher="Niklas Broberg" nrStudents="138"> </courses></gourses></gscheduler></pre>
--	---

Quiz!

What's wrong with DTDs?

- Only one base type CDATA.
- No way to specify constraints on data other than keys and references.
- No way to specify what elements references may point to if something is a reference then it may point to any key anywhere.
- ...

XML Schema

- Basic idea: why not use XML to define schemas of XML documents?
- XML Schema instances are XML documents specifying schemas of other XML documents.
- XML Schema is much more flexible than DTDs, and solves all the problems listed and more!
- DTDs are still the standard but XML Schema is the recommendation (by W3)!

Example: fragment of an XML Schema:
xml version="1.0"? <schema xmlns="http://www.w3.org/2001/XMLSchema"></schema>
<pre><element name="Course"> <complextype> <attribute name="code" type="string" use="required"> Autribute name="code" use="required" type="string"> Autribute name="code" use="string"</attribute></complextype></element></pre>
<pre><complextype> <atinute name="period" use="required"> Value constraint: craptriction base="integer") </atinute></complextype></pre> Value constraint:
<pre>sminlaclusive value="1"/> smaxlaclusive value="4" /> </pre> integer, restricted to values between 1 <pre>values between 1 </pre>
<pre>/simpleType></pre> <attribute name="teacher" type="string" use="optional"></attribute>
<attribute name="nrStudents" type="integer" use="optional"></attribute> <sequence>< </sequence>
<pre>>/retendent-> We can have keys and references as well, and any general assertions (though they can be tricky to write correctly).</pre>