
1

Database Indexes

Quiz!

How costly is this operation (naive solution)?

SELECT *

FROM Lectures

WHERE course = ’TDA356’

AND period = 2;

course per weekday hour room

TDA356 2 VR Monday 13:15

TDA356 2 VR Thursday 08:00

TDA356 4 HB1 Tuesday 08:00

TDA356 4 HB1 Friday 13:15

TIN090 1 HC1 Wednesday 08:00

TIN090 1 HA3 Thursday 13:15

n

Go through all n rows, compare
with the values for course and
period = 2n comparisons

Quiz!

Can you think of a way to make it faster?

SELECT *

FROM Lectures

WHERE course = ’TDA356’

AND period = 2;

If rows were stored sorted according to the values

course and period, we could get all rows with the
given values faster (O(log n) for tree structure).

Storing rows sorted is expensive, but we can use

an index that given values of these attributes
points out all sought rows (an index could be a
hash map, giving O(1) complexity to lookups).

Index

• When relations are large, scanning all
rows to find matching tuples becomes very
expensive.

• An index on an attribute A of a relation is a
data structure that makes it efficient to find
those tuples that have a fixed value for
attribute A.
– Example: a hash table gives amortized O(1)

lookups.

Quiz!

Asymptotic complexity (O(x) notation) is
misleading here. Why?

The asymptotic complexity works for data structures in main

memory. But when working with stored persistent data, the
running time of the data structure, once in main memory, is
negligible compared to the time it takes to read data from

disk. What really matters to get fast lookups in a database is
to minimize the number of disk blocks accessed (could use
asymptotic complexity over disk block accessing though).

Indexes help here too though. If a relation is stored over a
number of disk blocks, knowing in which of these to look is

helpful.

Disc and main memory

x =

y =

Program

Main memory

input()

output()

read()

write()

Disc

2

Typical costs

• Some typical costs of disk accessing for
database operations on a relation stored
over n blocks:
– Query the full relation: n (disk operations)

– Query with the help of index: k, where k is the
number of blocks pointed to (1 for key).

– Access index: 1

– Insert new value: 2 (one read, one write)

– Update index: 2 (one read, one write)

Example:

SELECT *

FROM Lectures

WHERE course = ’TDA356’

AND period = 2;

Assume Lectures is stored in n disk blocks. With no
index to help the lookup, we must look at all rows,

which means looking in all n disk blocks for a total
cost of n.

With an index, we find that there are 2 rows with the
correct values for the course and period attributes.

These are stored in two different blocks, so the total
cost is 3 (2 blocks + reading index).

Quiz!

How costly is this operation?

SELECT *

FROM Lectures, Courses

WHERE course = code;

Go through all n blocks in Lectures,

compare the value for course from
each row with the values for code in
all rows of Courses, stored in all m

blocks. The total cost is thus n * m
accessed disk blocks.

Lectures: n disk blocks

Courses: m disk blocks

Index on code in Courses:No index:

Go through all n blocks in Lectures,

compare the value for course from
each row with the index. Since
course is a key, each value will exist

at most once, so the cost is 2 * n + 1

accessed disk blocks (1 for fetching
the index once).

CREATE INDEX

• Most DBMS support the statement
CREATE INDEX index name
ON table (attributes);

– Example:

– Statement not in the SQL standard, but most
DBMS support it anyway.

– Primary keys are given indexes implicitly (by
the SQL standard).

CREATE INDEX courseIndex

ON Courses (code);

Important properties

• Indexes are separate data stored by itself.
� Can be created

�on newly created relations

�on existing relations

- will take a long time on large relations.

� Can be dropped without deleting any table data.

• SQL statements do not have to be

changed

– a DBMS automatically uses any indexes.

Quiz!

Why don’t we have indexes on all attributes for

faster lookups?

– Indexes require disk space.

– Modifications of tables are more expensive.

• Need to update both table and index.

– Not always useful

• The table is very small.

• We don’t perform lookups over it (Note: lookups ≠ queries).

– Using an index costs extra disk block accesses.

3

Rule of thumb

• Mostly queries on tables – use indexes for
key attributes.

• Mostly updates – be careful with indexes!

Quiz!

Assume we have an index on Lectures for (course,

period, weekday) which is the key. How costly

are these queries?

SELECT *

FROM Lectures

WHERE course = ’TDA356’

AND period = 2;

Lectures: n disk blocks

SELECT *

FROM Lectures

WHERE weekday = ’Monday’

AND room = ’VR’;

A multi-attribute index is typically organized hierarchically. First the

rows are indexed according to the first attribute, then according to
the second within each group, and so on.
Thus the left query costs at most k + 1 where k is the number of

rows matching the values. The right query can’t use the index, and
thus costs n, where n is the size of the relation in disk blocks.

Example: Suppose that the Lectures relation is
stored in 20 disk blocks, and that we typically
perform three operations on this table:
– insert new lectures (Ins)
– list all lectures of a particular course (Q1)

– list all lectures in a given room (Q2)

Let’s assume that in an average week there are:
– 2 lectures for each course, and

– 10 lectures in each room.

Let’s also assume that
– each course has lectures stored in 2 blocks, and

– each room has lectures stored in 7 (some lectures are
stored in the same block).

Lectures example: blocks

Index on

(course, period, weekday)

Index on

room

Costs

Case A Case B Case C Case D

No index

Index on

(course, period, weekday)

Index on

room Both indexes

Ins 2 4 4 6

Q1 20 3 20 3

Q2 20 20 8 8

Ins Q1 Q2 Case A Case B Case C Case D

0.2 0.4 0.4 16.4 10 12 5.6

0.8 0.1 0.1 5.6 5.5 6 5.9

0.1 0.6 0.3 18.2 8.2 14.8 4.8

Insert new lectures (Ins)

List all lectures of a particular course (Q1)
List all lectures in a given room (Q2)

The amortized cost depends on the proportion of operations of each kind.

Dense index on sequential file

KBB056

KMB017

TDA357

TMS145

UMF012

UMF018

KBB056 KC Monday 08

KMB017 MVH12 Tuesday 08

KMB017 MVH12 Wednesday 15

TDA357 HA4 Monday 10

TDA357 HB1 Thursday 10

TMS145 KC Friday 08

UMF012 MVF23 Friday 13

UMF012 MVF23 Monday 13

UMF018 MVF23 Tuesday 10

4

Sparse index on sequential file

KBB056

TDA357

UMF012

KBB056 KC Monday 08

KMB017 MVH12 Tuesday 08

KMB017 MVH12 Wednesday 15

TDA357 HA4 Monday 10

TDA357 HB1 Thursday 10

TMS145 KC Friday 08

UMF012 MVF23 Friday 13

UMF012 MVF23 Monday 13

UMF018 MVF23 Tuesday 10

Multi-level indexes

Outer index Inner index

index

block 0

index

block 1

data

block 0

data

block 1

Secondary index on room name

HA4

HB1

KC

MVF23

MVH12

KBB056 KC Monday 08

KMB017 MVH12 Tuesday 08

KMB017 MVH12 Wednesday 15

TDA357 HA4 Monday 10

TDA357 HB1 Thursday 10

TMS145 KC Friday 08

UMF012 MVF23 Friday 13

UMF012 MVF23 Monday 13

UMF018 MVF23 Tuesday 10

B+-tree

UMF012 UMF018TMS145TDA357KBB056 KMB017

• widely used

• non-leaf nodes form a hierarchy of sparse indexes

• insertions and deletions require only small, local

changes

TMS145

UMF012TDA357

Quiz!

• Indexes are incredibly useful (although they are
not part of the SQL standard).

• Doing it wrong is costly.

• Requires knowledge about the internals of a
DBMS.
– How is data stored? How large is a block?

• A DBMS should be able to decide better than
the user what indexes are needed, from usage
analysis.

So why don’t they??

Summary – indexes

• Indexes make certain lookups and joins more
efficient.
– Disk block access matters.

– Multi-attribute indexes

• CREATE INDEX

• Dense, sparse, multi-level and secondary

• Usage analysis
– What are the expected operations?

– How much do they cost?

Σ(cost of operation)x(proportion of operations of that kind)

5

XML

Semistructured data

XML, DTD, (XMLSchema)

XPath, XQuery

Quiz!
Assume we have a single course (Databases) that is the

exception to the rule in that it has two responsible

teachers (Niklas Broberg, Rogardt Heldal) when given in
the 2nd period. How can we model this?

1. Allow all courses to have two teachers. We extend the
GivenCourses table with another attribute teacher2, and

put NULL there for all other courses.

2. Allow courses to have any number of teachers. We

create a separate table Teaches with attributes course,

period and teacher, and make all three be the key.

1 means lots of NULLs, 2 means we must introduce a new table.

Seems overkill for such an easy task…

Example: A different way of thinking about data…

Courses

db
alg

p2
p4

p1
138

Niklas Broberg

Rogardt Heldal

120

Rogardt Heldal

68

Devdatt Dubhashi

Algorithms

Databases

TDA357 TIN090

2

4

1

course course
code

name

givenIn

period

teacher

nrStudents

code

name

givenIn

period

teacher

nrStudentsnrStudents

period

teacher

teacher

givenIn

Semi-structured data (SSD)

• More flexible data model than the
relational model.

– Think of an object structure, but with the type

of each object its own business.

– Labels to indicate meanings of substructures.

• Semi-structured: it is structured, but not

everything is structured the same way!

SSD Graphs

• Nodes = ”objects”, ”entities”

• Edges with labels represent attributes or

relationships.

• Leaf nodes hold atomic values.

• Flexibility: no restriction on

– Number of edges out from a node.

– Number of edges with the same label

– Label names

Example again:

Courses

db
alg

p2
p4

p1
138

Niklas Broberg

Rogardt Heldal

120

Rogardt Heldal

68

Devdatt Dubhashi

Algorithms

Databases

TDA357 TIN090

2

4

1

course course
code

name

givenIn

period

teacher

nrStudents

code

name

givenIn

period

teacher

nrStudentsnrStudents

period

teacher

teacher

givenIn

The ”entity”

representing the

Algorithms course

Its code attribute

No restriction on the

number of edges with

the label ”teacher”

6

Relationships in SSD graphs

• Relationships are marked by edges to some
node, that doesn’t have to be a child node.
– This means a SSD graph is not a tree, but a true

graph.

– Cyclic relationships possible.

• Using relationships, it is possible to directly
mimic the behavior of the relational model.
– Graph is three levels deep – one for a relation, the

second for its contents, the third for the attributes.

– References are inserted as relationship edges.

• SSD is a generalization of the relational model!

Example:

c gc l r

db

alg

db2

db4

db2mo

db2th

vr

hb1

Scheduler

TDA357

TIN090

Databases

Algorithms

Niklas Broberg

4

Rogardt Heldal

Monday

Thursday

2

13:15

VR

HB1

10:00 184

216

Courses

GivenCourses Lectures
Rooms

Course Course

code name

code

name

teacher
period

teacher

period

GivenCourse

GivenCourse Lecture

Lecture

weekday

weekday

hour

hour

Room

Room

name

name

nrSeats

nrSeats

138

nrStudents

93

nrStudents

isCourse

isCourse

lectureIn

lectureIn

inRoom

inRoom

Schemas for SSD

• Inherently, semi-structured data does not
have schemas.

– The type of an object is its own business.

– The schema is given by the data.

• We can of course restrict graphs in any
way we like, to form a kind of ”schema”.

– Example: All ”course” nodes must have a

”code” attribute.

XML

• XML = eXtensible Markup Language

• Derives from document markup
languages.
– Compare with HTML: HTML uses ”tags” for

formatting a document, XML uses ”tags” to
describe semantics.

• Key idea: create tag sets for a domain,
and translate data into properly tagged
XML documents.

XML vs SSD

• XML is a language that describes data and
its structure.

– Cf. relational data: SQL DDL + data in tables.

• The data model behind XML is semi-
structured data.

– Using XML, we can describe an SSD graph

as a tagged document.

Example XML document:

<Scheduler>

<Courses>

<Course code=”TDA357” name=”Databases>

<GivenIn

nrStudents=”138”

teacher=”Niklas Broberg”>2</GivenIn>

<GivenIn

nrStudents=”93”

teacher=”Rogardt Heldal”>4</GivenIn>

</Course>

</Courses>

</Scheduler>

A node is

represented

by an element

marked by a

start and an

end tag.

Child nodes are represented

by child elements inside the

parent element.

Leaf nodes with values

can be represented as

either attributes…

… or as element

data

Note that XML is case sensitive!

7

XML explained

• An XML element is denoted by surrounding tags:
<Course>...</Course>

• Child elements are written as elements between the tags
of its parent, as is simple string content:
<Course><GivenIn>2</GivenIn></Course>

• Attributes are given as name-value pairs inside the

starting tag:
<Course code=”TDA357”>…</Course>

• Elements with no children can be written using a short-
hand:
<Course code=”TDA357” />

Example again:

<Scheduler>

<Courses>

<Course code=”TDA357” name=”Databases>

<GivenIn

nrStudents=”138”

teacher=”Niklas Broberg”>2</GivenIn>

<GivenIn

nrStudents=”93”

teacher=”Rogardt Heldal”>4</GivenIn>

</Course>

</Courses>

</Scheduler>

Note that XML is case sensitive!

Starting tags

of elements
Attributes

Child elements

inside the parents

String content

(CDATA)

XML namespaces

• XML is used to describe a multitude of
different domains. Many of these will work

together, but have name clashes.

• XML defines namespaces that can
disambiguate these circumstances.

– Example:

<sc:Scheduler

xmlns:sc=”http://www.cs.chalmers.se/~dbas/xml”

xmlns:www=”http://www.w3.org/xhtml”>

<sc:Course code=”TDA357” sc:name=”Databases”

www:name=”dbas” />

</sc:Scheduler>

Use xmlns to bind namespaces to

variables in this document.

Quiz!

What’s wrong with this XML document?

<Course code=”TDA357”>

<GivenIn period=”2” >

<GivenIn period=”4” >

</Course>

No end tags provided for the GivenIn elements!
We probably meant e.g. <GivenIn … />

What about the name of the course? Teachers?

Well-formed and valid XML

• Well-formed XML directly matches semi-
structured data:

– Full flexibility – no restrictions on what tags

can be used where, how many, what

attributes etc.

– Well-formed means syntactically correct.

• E.g. all start tags are matched by an end tag.

• Valid XML involves a schema that limits
what labels can be used and how.

Well-formed XML

• A document must start with a declaration,
surrounded by <? … ?>

– Normal declaration is:

… where standalone means basically ”no schema
provided”.

• Structure of a document is a root element

surrounding well-formed sub-documents.

<?xml version=”1.0” standalone=”yes” ?>

8

DTDs

• DTD = Document Type Definition

• A DTD is a schema that specifies what

elements may occur in a document, where

they may occur, what attributes they may
have, etc.

• Essentially a context-free grammar for
describing XML tags and their nesting.

Basic building blocks

• ELEMENT: Define an element and what children

it may have.

– Children use standard regexp syntax: * for 0 or more,

+ for 1 or more, ? for 0 or 1, | for choice, commas for

sequencing.

– Example:

• ATTLIST: Define the attributes of an element.

– Example:

– Course elements are required to have an attribute
code of type CDATA (string).

<!ELEMENT Courses (Course*)>

<!ATTLIST Course

code CDATA #REQUIRED>

Example: Part of a DTD for the Scheduler domain

<!DOCTYPE Scheduler [

<!ELEMENT Scheduler (Course*)>

<!ELEMENT Course (GivenIn*)>

<!ELEMENT GivenIn (#PCDATA)>

<!ATTLIST Course

code CDATA #REQUIRED

name CDATA #REQUIRED

>

<!ATTLIST GivenIn

teacher CDATA #IMPLIED

nrStudents CDATA ”0”

>

]>

A Scheduler element can have 0 or

more Course elements as children.

PCDATA means Character

Data, i.e. a string. DTDs have

(almost) no other base types.

These attributes must be set…

(Cf. NOT NULL)

…but not this one.

Default value is 0

Quiz: If we want courses to be
able to have more than one

teacher, what could we do?

One suggestion is to make a ”Teacher”

element with PCDATA content, and allow
GivenIn elements to have 1 or more of
those as children. Period could be an

attribute instead.

Non-tree structures

• DTDs allow references between elements.

– The type of one attribute of an element can be

set to ID, which makes it unique.

– Another element can have attributes of type

IDREF, meaning that the value must be an ID

in some other element.

<!ATTLIST Room

name ID #REQUIRED>

<!ATTLIST Lecture

room IDREF #IMPLIED>

<Scheduler>

… <Room name=”VR” … />

… <Lecture room=”VR” … />

</Scheduler>

<?xml version=”1.0”

encoding=”utf-8”

standalone=”no” ?>

<!DOCTYPE Scheduler [

<!ELEMENT Scheduler

(Courses,Rooms)>

<!ELEMENT Courses (Course*)>

<!ELEMENT Rooms (Room*)>

<!ELEMENT Course (GivenIn*)>

<!ELEMENT GivenIn (Lecture*)>

<!ELEMENT Lecture EMPTY>

<!ELEMENT Room EMPTY>

<!ATTLIST Course

code ID #REQUIRED

name CDATA #REQUIRED >

<!ATTLIST GivenIn

period CDATA #REQUIRED

teacher CDATA #IMPLIED

nrStudents CDATA ”0” >

<!ATTLIST Lecture

weekday CDATA #REQUIRED

hour CDATA #REQUIRED

room IDREF #IMPLIED >

<!ATTLIST Room

name ID #REQUIRED

nrSeats CDATA #IMPLIED >

]>

<Scheduler>

<Courses>

<Course code=”TDA357”

name=”Databases”>

<GivenIn period=”2”

teacher=”Niklas Broberg”

nrStudents=”138”>

<Lecture weekday=”Monday”

hour=”13:15” room=”VR” />

<Lecture weekday=”Thursday”

hour=”10:00” room=”HB1” />

</GivenIn>

<GivenIn period=”4”

teacher=”Rogardt Heldal”>

</GivenIn>

</Course>

</Courses>

<Rooms>

<Room name="VR" nrSeats="216"/>

<Room name="HB1" nrSeats="184"/>

</Rooms>

</Scheduler>

Beginning of document with DTD Document body

courses.xml (a smaller example)
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE Courses [

<!ELEMENT Courses (Course*)>

<!ELEMENT Course (GivenIn*)>

<!ELEMENT GivenIn EMPTY>

<!ATTLIST Course

code ID #REQUIRED

name CDATA #REQUIRED >

<!ATTLIST GivenIn

period CDATA #REQUIRED

teacher CDATA #IMPLIED >

]>

<Courses>

<Course name="Databases" code="TDA357">

<GivenIn period="2" teacher="Niklas Broberg" />

<GivenIn period="4" teacher="Rogardt Heldal" />

</Course>

<Course name="Algorithms" code="TIN090">

<GivenIn period="1" teacher="Devdatt Dubhashi" />

</Course>

</Courses>

9

Quiz!

What’s wrong with DTDs?

• Only one base type – CDATA.

• No way to specify constraints on data other than

keys and references.

• No way to specify what elements references may
point to – if something is a reference then it may
point to any key anywhere.

• …

XML Schema

• Basic idea: why not use XML to define schemas

of XML documents?

• XML Schema instances are XML documents

specifying schemas of other XML documents.

• XML Schema is much more flexible than DTDs,

and solves all the problems listed and more!

• DTDs are still the standard – but XML Schema is

the recommendation (by W3)!

Example: fragment of an XML Schema:
<?xml version="1.0"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema”>

<element name=”Course”>

<complexType>

<attribute name=”code” use=”required” type=”string”>

<attribute name=”name” use=”required” type=”string”>

<sequence>

<element name=”GivenIn” maxOccurs=”4”>

<complexType>

<attribute name=”period” use=”required”>

<simpleType>

<restriction base=”integer”>

<minInclusive value=”1” />

<maxInclusive value=”4” />

</restriction>

</simpleType>

</attribute>

<attribute name=”teacher” use=”optional” type=”string” />

<attribute name=”nrStudents” use=”optional” type=”integer” />

<sequence>...</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</schema>

Value constraint:

Period must be an

integer, restricted to

values between 1

and 4 inclusive.

Multiplicity constraint:

A course can only be

given at most four

times a year.

We can have keys and references as

well, and any general assertions (though
they can be tricky to write correctly).

