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• Model Checking with CTL

• (Intraprocedural) Data-Flow Analysis as Model Checking

• From Programs to Program Models

• Exemplary Data-Flow Properties and their Analysis via Model Checking

• Higher-Level Applications

• Outlook: Constraint-Based Workflow Design
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Data-Flow Analysis via Model Checking



Model Checking

• Technique for automatic formal verification of finite state systems.

• The model checking process can be divided into three main tasks: 

1. Modeling:
Convert a design (software or hardware) into a formalism accepted by a 
model-checking tool. 

2. Specification:
State the properties that the design must satisfy (some logical formalism, 
common is modal logic).

3. Verification:
Check if the model satisfies the specification (ideally completely automatic).
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Modeling: Kripke Transition Systems

• A Kripke transition system (KTS) is a structure M = (S, Act, →, AP, I) where

• S is a finite set of states. 

• Act is a finite set of actions. 

• → ⊆ S × Act × S is a total transition relation. 

• AP is a set of atomic propositions.

• I : S → 2AP is an interpretation function that labels states with subsets of 
AP.
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Modeling: Kripke Transition Systems

• Example: 

M = (S, Act, →, AP, I) with

S = {0, 1, 2, 3, 4}
Act = {a, b}
→ = {(0,b,2), (1,a,1), (2,a,3), (2,b,1), (3,b,2), (3,a,4), (4,b,4)}
AP = {"black", "white"}
I = {I(0) = I(1) = „white“, I(2) = I(3) = I(4) = „black“}
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Specification: CTL

• CTL: Computation Tree Logic, a high-level specification language

• A subset of the modal μ-calculus, but with easier-to-understand operators. 

• Conceptually, CTL formulas describe properties of computation trees: 

• Designate a state in the model as initial state,

• unwind the structure into an infinite tree with the initial state at the root, 

• then this tree show all possible executions of the model. 
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Computation Tree Example
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Specification: CTL
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• CTL operators consist of two parts: 

• The path quantifier, i.e. A („for all“) or E („exists“): 
states on which paths of the computation three the formula must hold. 

• The state quantifier, i.e. X („next“), G („globally“), F („finally“), 
SU („strong until“) or WU („weak until“): 
expresses when, on certain paths, the formula must hold. 



Specification: CTL
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• A CTL formula can be generated according to the following BNF:

Ф ::= p | ¬Ф | Ф ∨ Ф | Ф ∧ Ф | Ф ⇒ Ф |
        EX(Ф) | EF(Ф) | EG(Ф) | ESU(Ф,Ф) | EWU(Ф,Ф) |
        AX(Ф) | AF(Ф) | AG(Ф) | ASU(Ф,Ф) | AWU(Ф,Ф) |
        EXback(Ф) | EFback(Ф) | EGback(Ф) | ESUback(Ф,Ф) | EWUback(Ф,Ф) |
        AXback(Ф) | AFback(Ф) | AGback(Ф) | ASUback(Ф,Ф) | AWUback(Ф,Ф) 

• p (atomic propositions) and boolean connectives as in propositional logic. 

• CTL operators as described on the previous slide. 

• back denotes backward operators. 



CTL Exercise

• What do the following formulas mean?

• EG(black)

• EX(AG(black))

• AWU(black, white)

• Write CTL formulas expressing:

• "All roads lead to Rome."

• "It is possible that is does not snow before Christmas."
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Verification

• The (global) model checking problem: 
Given a KTS M = (S, Act, →, AP, I) and a temporal formula Ф, find the set of 
all sates in S that satisfy Ф:

       {s ∈ S | s ⊨ Ф}

• For verification, CTL formulas are translated into μ-calculus formulas.

• Verification algorithm: 
not discussed today, but be assured that it works. :-)
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Global Model Checking Example

• Where do the following formulas hold?

• EG(black)

• EX(AG(black))

• AWU(black, white)
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Background: Optimizing Compilers
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Data-Flow Analysis

• Collection of information that is useful for or prerequisite to code 
improvement by automatic identification of program points enjoying 
particular properties.

• Classic approach (e.g. in optimizing compilers): 
DFA algorithm for a property : program ⇒ program points with the property

• Compare with model checking: 
model checker : modal formulas × model ⇒ states satisfying the formula

• Idea of DFA-MC: 
Model checkers can be seen as DFA algorithms that have the property 
of interest as a parameter. 
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Data-Flow Analysis via Model Checking
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• Two transformations 
necessary:

1. Programs have to be 
turned into appropriate 
program models

2. DFA equations have to 
be turned into modal 
specifications



From Programs to Program Models

• Slight variants of Kripke transition systems work well for modeling sequential 
imperative programs for DFA purposes. 

• A program model is a quadruple P = (S, →, AP, I), where

• S is a finite set of nodes or program states (representing a single statement of 
the program), containing one start node (head) and one or more end nodes (tail).

• → ⊆ S × {true, false, default} × S is a set of labeled transitions that defines the 
control flow of P.

• AP is a set of atomic propositions. 

• I : S → 2AP is an interpretation function that labels states with subsets of AP.
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Program Model Example

• The Fibonacci numbers:

Fib(0) = 0;
Fib(1) = 1;
Fib(n) = Fib(n-1) + Fib(n-2) for n>1

• A function for (iteratively) computing 
the nth Fibonacci number:
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int Fibonacci(int n)
{
   int f1 = 0;
   int f2 = 1;
   int fn;
   for (int i = 2; i < n; i++)
   {
      fn = f1 + f2;
      f1 = f2;
      f2 = fn;
   }
   return fn;
}  



Program Model Example

• As flow graph: 
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Basic Properties: isDef, isUsed, isMod

• Note: We use three-address code here, i.e. statements consist of one 
operator, at most one result, and at most two arguments. 

• Three basic properties can be defined on the structure of such statements: 

1. isDef: A variable A is defined if the statement can (potentially) change the 
value of A, for instance by an assignment.

2. isUsed: A variable A or an expression XopY is used if there is any 
occurrence of A or XopY as an operand. 

3. isMod: An expression XopY is modified if the statement defines X or Y. 
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Program Model Example: Basic Properties

• Variables in the program:
i, n, f1, f2, fn

• Expressions in the program: 
i+1, i<n, f1+f2

• The annotations for variable i 
and expression i+1 are 
shown on the right.

• Exercise:
Complete the annotations for 
the remaining variables and 
expressions!
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Program Model Example: Basic Properties
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Data-Flow Analysis

• Four basic DFA problems: 

• Live Variables

• Very Busy Expressions

• Available Expressions

• Reaching Definitions
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Live Variables

• A variable x is live at point p if the 
value of x at p is used along some path 
in the flow graph starting at p. 

• Otherwise x is dead at p. 

• Useful for, e.g.: Dead Assignment 
Elimination, register allocation.

• The following CTL formula specifies 
the states at which x is live: 

isLive(x) = ESU(¬isDef(x), isUsed(x))
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Live Variables: Exercise

• Choose one of the remaining variables (i.e. x ∈ {n, f1, f2, fn}) and determine the 
states where isLive(x) holds.
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Live Variables: isLive(n)
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Live Variables: isLive(f1)
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Live Variables: isLive(f2)
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Live Variables: isLive(fn)
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Very Busy Expressions

• An expression e = XopY is very 
busy at point p if along every path 
from p control comes to a 
computation of XopY before any 
definition of X or Y.

• Useful for, e.g.: expression hoisting.

• The following CTL formula specifies 
the states at which e is very busy: 

isVBE(e) = 
ASU(¬isMod(e), isUsed(e))
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Very Busy Expressions: Exercise

• Choose one of the remaining expressions (i.e. e ∈ {i<n, f1+f2}) and determine 
the states where isVBE(e) holds.
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Very Busy Expressions: isVBE(i<n)
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Very Busy Expressions: isVBE(i<n)
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Available Expressions

• An expression e = XopY is available at a point 
p if every path (not necessarily cycle-free) from 
the initial node to p contains XopY, and after 
the last such occurrence prior to reaching p, 
there are no subsequent definitions of X or Y.

• Useful for, e.g.: Common Subexpr. Elimination.

• The following CTL formula specifies the states 
on which e is available: 

isAvail(e) = AXback(ASUback(¬isMod(e), isGen(e)))
  where
isGen(e) = isUsed(e) ∧ ¬isMod(e)
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Available Expressions: Exercise

• Choose one of the remaining expressions (i.e. e ∈ {i<n, f1+f2}) and determine 
the states where isAvail(e) holds.
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Available Expressions: isAvail(i<n)
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Available Expressions: isAvail(f1+f2)
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Reaching Definitions

• A definition of a variable a reaches a 
point p if there is a path in the flow graph 
from that definition to p, such that no 
other definitions of a appear on the path.

• Useful for, e.g.: construction of direct links

• The following formula specifies the states 
that are reached by the definition of 
variable a at state s:

isReaching(a,s) = 
EXback(ESUback(isPreserved(a,s), s))
  where
isPreserved(a,s) = ¬isDef(a) ∧ EFback(s)
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Reaching Definitions: Exercise

• Choose one of the remaining definitions (a,s) and determine the states where 
isReaching(a,s) holds.
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Reaching Definitions: isReaching(f1,1)
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Reaching Definitions: isReaching(f2,2)
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Reaching Definitions: isReaching(i,3)
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Reaching Definitions: isReaching(i,6)
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Further Analyses

• Live Definitions

• Common Subexpressions

• Use-Definition Chaining

• Definition-Use Chaining

• Copy Propagation

• Optimal Computation Points

• ...
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Optimal Computation Points

• Consider an expression e=XopY. 
The following formula specifies 
the state that is the optimal 
computation point for e: 

isOCP(e) = isSafe(e) ∧ isEarly(e)
  where
isSafe(e) = 
ASU(¬isMod(e), isUsed(e))
  and
isEarly(e) = 
AXback(false) ∨ 
¬(AXback(AWUback(¬(isMod(e) ∨  
AXback(false)), isSafe(e) ∧ 
¬isMod(e))))
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Higher-Level Applications

• Compilers use highly 
optimized techniques for 
data-flow analyses (e.g. bit 
vector analysis algorithms). 

• Model checking is more 
natural in the context of 
model-driven development, 
such as model-based 
workflow design. 

• Services (the workflow 
building blocks) can be 
annotated with isDef and 
isUsed information as well. 
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Background: Phylogenetic Analyses
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Simple Phylogenetic Analysis Workflow
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Snippets for Phylogenetic Analysis Workflows
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Snippets for Phylogenetic Analysis Workflows
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Data-Flow Annotations (isDef, isUsed)
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DFA-MC for Higher-Level Applications

• Can compute live/dead variables and reaching definitions information, in 
workflows with real expressions also very busy and available expressions.

• But: workflows do not have the same optimization problems as compilers...

• Other DFA analyses make more sense for workflows, e.g.:

• Ensuring that if variable x is used, it has been defined before: 
isUsed(x) ⇒ AFback(isDef(x))

• Ensuring that if variable x of type y is used, it has been defined with this 
type before and not been overwritten since: 
(isUsed(x) ∧ type(x)=y) ⇒ ASUback(¬isDef(x), isDef(x) ∧ type(x)=y)
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Workflow Variant
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isUsed(alignment) ⇒ AFback(isDef(alignment))
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isUsed(alignment) ⇒ AFback(isDef(alignment))
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Domain-Specific Constraints

• Even more attractive for (scientific) workflows are formulas that express 
domain-specific constraints, e.g.:

• Extracting a phylogenic tree only works for ClustalW alignments:
(isUsed(x) ∧ type(x)=alignment ∧ extractPhylogeneticTree) 
⇒ ASUback(¬isDef(x), isDef(x) ∧ type(x)=alignment ∧ ClustalW)

• Computed alignments should always be saved: 
isDef(alignment) ⇒ AF(isUsed(alignment) ∧ writeAlignmentFile)

• No alignment computation before an algorithm has been chosen:
AWU(¬ alignment, chooseAlgorithm) 

55



Workflow Variant
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"Extracting a phylogenic tree only works for 
ClustalW alignments"
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"Extracting a phylogenic tree only works for 
ClustalW alignments"
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• constraint-guarded:
monitoring of workflow 
development by continuous 
model checking

Outlook: Constraint-Driven Workflow Design

⊨
?

ɸ1 ✔
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ɸ4 ✘
ɸ5 ✘
...
ɸn ✔
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The End

• Thank you!
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