
Software Engineering using Formal Methods
Reasoning about Programs with Dynamic Logic

Wolfgang Ahrendt

9 October 2014

SEFM: DL 1 /GU 141009 1 / 45

Part I

Where are we?

SEFM: DL 1 /GU 141009 2 / 45

Where Are We?

before specification of Java programs with JML

now dynamic logic (DL) for resoning about Java programs

after that generating DL from JML+Java

+ verifying the resulting proof obligations

SEFM: DL 1 /GU 141009 3 / 45

Where Are We?

before specification of Java programs with JML

now dynamic logic (DL) for resoning about Java programs

after that generating DL from JML+Java

+ verifying the resulting proof obligations

SEFM: DL 1 /GU 141009 3 / 45

Where Are We?

before specification of Java programs with JML

now dynamic logic (DL) for resoning about Java programs

after that generating DL from JML+Java

+ verifying the resulting proof obligations

SEFM: DL 1 /GU 141009 3 / 45

Where Are We?

before specification of Java programs with JML

now dynamic logic (DL) for resoning about Java programs

after that generating DL from JML+Java

+ verifying the resulting proof obligations

SEFM: DL 1 /GU 141009 3 / 45

Motivation

Consider the method

public void doubleContent(int [] a) {

int i = 0;

while (i < a.length) {

a[i] = a[i] * 2;

i++;

}

}

We want a logic/calculus allowing to express/prove properties like, e.g.:

If a 6= null

then doubleContent terminates normally
and afterwards all elements of a are twice the old value

SEFM: DL 1 /GU 141009 4 / 45

Motivation

Consider the method

public void doubleContent(int [] a) {

int i = 0;

while (i < a.length) {

a[i] = a[i] * 2;

i++;

}

}

We want a logic/calculus allowing to express/prove properties like, e.g.:

If a 6= null

then doubleContent terminates normally
and afterwards all elements of a are twice the old value

SEFM: DL 1 /GU 141009 4 / 45

Motivation

Consider the method

public void doubleContent(int [] a) {

int i = 0;

while (i < a.length) {

a[i] = a[i] * 2;

i++;

}

}

We want a logic/calculus allowing to express/prove properties like, e.g.:

If a 6= null

then doubleContent terminates normally
and afterwards all elements of a are twice the old value

SEFM: DL 1 /GU 141009 4 / 45

Motivation (contd.)

One such logic is dynamic logic (DL).

The above statemet in DL would be:

a 6= null

∧ a 6= b

∧ ∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = b[i])
→ 〈doubleContent(a);〉
∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = 2 ∗ b[i])

I DL combines first-order logic (FOL) with programs

I Theory of DL extends theory of FOL

I Necessary to look closer at FOL at first

I Then extend towards DL

SEFM: DL 1 /GU 141009 5 / 45

Motivation (contd.)

One such logic is dynamic logic (DL).
The above statemet in DL would be:

a 6= null

∧ a 6= b

∧ ∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = b[i])
→ 〈doubleContent(a);〉
∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = 2 ∗ b[i])

I DL combines first-order logic (FOL) with programs

I Theory of DL extends theory of FOL

I Necessary to look closer at FOL at first

I Then extend towards DL

SEFM: DL 1 /GU 141009 5 / 45

Motivation (contd.)

One such logic is dynamic logic (DL).
The above statemet in DL would be:

a 6= null

∧ a 6= b

∧ ∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = b[i])
→ 〈doubleContent(a);〉
∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = 2 ∗ b[i])

I DL combines first-order logic (FOL) with programs

I Theory of DL extends theory of FOL

I Necessary to look closer at FOL at first

I Then extend towards DL

SEFM: DL 1 /GU 141009 5 / 45

Motivation (contd.)

One such logic is dynamic logic (DL).
The above statemet in DL would be:

a 6= null

∧ a 6= b

∧ ∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = b[i])
→ 〈doubleContent(a);〉
∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = 2 ∗ b[i])

I DL combines first-order logic (FOL) with programs

I Theory of DL extends theory of FOL

I Necessary to look closer at FOL at first

I Then extend towards DL

SEFM: DL 1 /GU 141009 5 / 45

Motivation (contd.)

One such logic is dynamic logic (DL).
The above statemet in DL would be:

a 6= null

∧ a 6= b

∧ ∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = b[i])
→ 〈doubleContent(a);〉
∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = 2 ∗ b[i])

I DL combines first-order logic (FOL) with programs

I Theory of DL extends theory of FOL

I Necessary to look closer at FOL at first

I Then extend towards DL

SEFM: DL 1 /GU 141009 5 / 45

Motivation (contd.)

One such logic is dynamic logic (DL).
The above statemet in DL would be:

a 6= null

∧ a 6= b

∧ ∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = b[i])
→ 〈doubleContent(a);〉
∀int i;((0 ≤ i ∧ i < a.length)→ a[i] = 2 ∗ b[i])

I DL combines first-order logic (FOL) with programs

I Theory of DL extends theory of FOL

I Necessary to look closer at FOL at first

I Then extend towards DL

SEFM: DL 1 /GU 141009 5 / 45

Today

introducing dynamic logic for Java

I recap first-order logic (FOL)

I semantics of FOL
I dynamic logic = extending FOL with

I dynamic interpretations
I programs to describe state change

SEFM: DL 1 /GU 141009 6 / 45

Repetition: First-Order Logic

Signature

A first-order signature Σ consists of

I a set TΣ of types

I a set FΣ of function symbols

I a set PΣ of predicate symbols

Type Declarations

I τ x ; ‘variable x has type τ ’

I p(τ1, . . . , τr); ‘predicate p has argument types τ1, . . . , τr ’

I τ f (τ1, . . . , τr); ‘function f has argument types τ1, . . . , τr
and result type τ ’

SEFM: DL 1 /GU 141009 7 / 45

Repetition: First-Order Logic

Signature

A first-order signature Σ consists of

I a set TΣ of types

I a set FΣ of function symbols

I a set PΣ of predicate symbols

Type Declarations

I τ x ; ‘variable x has type τ ’

I p(τ1, . . . , τr); ‘predicate p has argument types τ1, . . . , τr ’

I τ f (τ1, . . . , τr); ‘function f has argument types τ1, . . . , τr
and result type τ ’

SEFM: DL 1 /GU 141009 7 / 45

Part II

First-Order Semantics

SEFM: DL 1 /GU 141009 8 / 45

First-Order Semantics

From propositional to first-order semantics

I In prop. logic, an interpretation of variables with {T ,F} sufficed
I In first-order logic we must assign meaning to:

I function symbols (incl. constants)
I predicate symbols

I Respect typing: int i, List l must denote different elements

What we need (to interpret a first-order formula)

1. A collection of typed universes of elements

2. A mapping from variables to elements

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds

SEFM: DL 1 /GU 141009 9 / 45

First-Order Semantics

From propositional to first-order semantics

I In prop. logic, an interpretation of variables with {T ,F} sufficed
I In first-order logic we must assign meaning to:

I function symbols (incl. constants)
I predicate symbols

I Respect typing: int i, List l must denote different elements

What we need (to interpret a first-order formula)

1. A collection of typed universes of elements

2. A mapping from variables to elements

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds

SEFM: DL 1 /GU 141009 9 / 45

First-Order Domains/Universes

1. A collection of typed universes of elements

Definition (Universe/Domain)

A non-empty set D of elements is a universe or domain.
Each element of D has a fixed type given by δ : D → TΣ

I Notation for the domain elements of type τ ∈ TΣ:
Dτ = {d ∈ D | δ(d) = τ}

I Each type τ ∈ TΣ must ‘contain’ at least one domain element:
Dτ 6= ∅

SEFM: DL 1 /GU 141009 10 / 45

First-Order States

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)

Let D be a domain with typing function δ.

For each f be declared as τ f (τ1, . . . , τr);

and each p be declared as p(τ1, . . . , τr);

I(f) is a mapping I(f) : Dτ1 × · · · × Dτr → Dτ

I(p) is a set I(p) ⊆ Dτ1 × · · · × Dτr

Then S = (D, δ, I) is a first-order state

SEFM: DL 1 /GU 141009 11 / 45

First-Order States

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)

Let D be a domain with typing function δ.

For each f be declared as τ f (τ1, . . . , τr);

and each p be declared as p(τ1, . . . , τr);

I(f) is a mapping I(f) : Dτ1 × · · · × Dτr → Dτ

I(p) is a set I(p) ⊆ Dτ1 × · · · × Dτr

Then S = (D, δ, I) is a first-order state

SEFM: DL 1 /GU 141009 11 / 45

First-Order States

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)

Let D be a domain with typing function δ.

For each f be declared as τ f (τ1, . . . , τr);

and each p be declared as p(τ1, . . . , τr);

I(f) is a mapping I(f) : Dτ1 × · · · × Dτr → Dτ

I(p) is a set I(p) ⊆ Dτ1 × · · · × Dτr

Then S = (D, δ, I) is a first-order state

SEFM: DL 1 /GU 141009 11 / 45

First-Order States

3. For each function symbol, a mapping from arguments to results

4. For each predicate symbol, a set of argument tuples where that
predicate holds

Definition (First-Order State)

Let D be a domain with typing function δ.

For each f be declared as τ f (τ1, . . . , τr);

and each p be declared as p(τ1, . . . , τr);

I(f) is a mapping I(f) : Dτ1 × · · · × Dτr → Dτ

I(p) is a set I(p) ⊆ Dτ1 × · · · × Dτr

Then S = (D, δ, I) is a first-order state

SEFM: DL 1 /GU 141009 11 / 45

First-Order States Cont’d

Example

Signature: int i; int j; int f(int); Object obj; <(int,int);

D = {17, 2, o}

The following I is a possible interpretation:

I(i) = 17
I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) no
(2, 17) yes
(17, 2) no

(17, 17) no

One of uncountably many possible first-order states!

SEFM: DL 1 /GU 141009 12 / 45

First-Order States Cont’d

Example

Signature: int i; int j; int f(int); Object obj; <(int,int);

D = {17, 2, o}
The following I is a possible interpretation:

I(i) = 17
I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) no
(2, 17) yes
(17, 2) no

(17, 17) no

One of uncountably many possible first-order states!

SEFM: DL 1 /GU 141009 12 / 45

Semantics of Reserved Signature Symbols

Definition

Reserved predicate symbol for equality: =

Interpretation is fixed as I(=) = {(d , d) | d ∈ D}

Exercise: write down all elements of the set I(=) for example domain

SEFM: DL 1 /GU 141009 13 / 45

Semantics of Reserved Signature Symbols

Definition

Reserved predicate symbol for equality: =

Interpretation is fixed as I(=) =

{(d , d) | d ∈ D}

Exercise: write down all elements of the set I(=) for example domain

SEFM: DL 1 /GU 141009 13 / 45

Semantics of Reserved Signature Symbols

Definition

Reserved predicate symbol for equality: =

Interpretation is fixed as I(=) = {(d , d) | d ∈ D}

Exercise: write down all elements of the set I(=) for example domain

SEFM: DL 1 /GU 141009 13 / 45

Semantics of Reserved Signature Symbols

Definition

Reserved predicate symbol for equality: =

Interpretation is fixed as I(=) = {(d , d) | d ∈ D}

Exercise: write down all elements of the set I(=) for example domain

SEFM: DL 1 /GU 141009 13 / 45

Signature Symbols vs. Domain Elements

I Domain elements different from the terms representing them

I First-order formulas and terms have no access to domain

Example

Signature: Object obj1, obj2;

Domain: D = {o}

In this state, necessarily I(obj1) = I(obj2) = o

SEFM: DL 1 /GU 141009 14 / 45

Signature Symbols vs. Domain Elements

I Domain elements different from the terms representing them

I First-order formulas and terms have no access to domain

Example

Signature: Object obj1, obj2;

Domain: D = {o}

In this state, necessarily I(obj1) = I(obj2) = o

SEFM: DL 1 /GU 141009 14 / 45

Variable Assignments

2. A mapping from variables to domain elements

Definition (Variable Assignment)

A variable assignment β maps variables to domain elements
It respects the variable type, i.e., if x has type τ then β(x) ∈ Dτ

SEFM: DL 1 /GU 141009 15 / 45

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β
it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

valS,β : Term→ D such that valS,β(t) ∈ Dτ for t ∈ Termτ :

I valS,β(x) =

β(x)

I valS,β(f (t1, . . . , tr)) = I(f)(valS,β(t1), . . . , valS,β(tr))

SEFM: DL 1 /GU 141009 16 / 45

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β
it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

valS,β : Term→ D such that valS,β(t) ∈ Dτ for t ∈ Termτ :

I valS,β(x) = β(x)

I valS,β(f (t1, . . . , tr)) = I(f)(valS,β(t1), . . . , valS,β(tr))

SEFM: DL 1 /GU 141009 16 / 45

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β
it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

valS,β : Term→ D such that valS,β(t) ∈ Dτ for t ∈ Termτ :

I valS,β(x) = β(x)

I valS,β(f (t1, . . . , tr)) =

I(f)(valS,β(t1), . . . , valS,β(tr))

SEFM: DL 1 /GU 141009 16 / 45

Semantic Evaluation of Terms

Given a first-order state S and a variable assignment β
it is possible to evaluate first-order terms under S and β

Definition (Valuation of Terms)

valS,β : Term→ D such that valS,β(t) ∈ Dτ for t ∈ Termτ :

I valS,β(x) = β(x)

I valS,β(f (t1, . . . , tr)) = I(f)(valS,β(t1), . . . , valS,β(tr))

SEFM: DL 1 /GU 141009 16 / 45

Semantic Evaluation of Terms Cont’d

Example

Signature: int i; int j; int f(int);

D = {17, 2, o} Variables: Object obj; int x;

I(i) = 17
I(j) = 17

Dint I(f)

2 17
17 2

Var β

obj o
x 17

I valS,β(f(f(i))) ?

I valS,β(f(f(x))) ?

I valS,β(obj) ?

SEFM: DL 1 /GU 141009 17 / 45

Preparing for Semantic Evaluation of Formulas

Definition (Modified Variable Assignment)

Let y be variable of type τ , β variable assignment, d ∈ Dτ :

βdy (x) :=

{
β(x) x 6= y
d x = y

SEFM: DL 1 /GU 141009 18 / 45

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

valS,β(φ) for φ ∈ For

I valS,β(p(t1, . . . , tr)) = T iff (valS,β(t1), . . . , valS,β(tr)) ∈ I(p)

I valS,β(φ ∧ ψ) = T iff valS,β(φ) = T and valS,β(ψ) = T

I . . . as in propositional logic

I valS,β(∀ τ x ; φ) = T iff valS,βd
x

(φ) = T for all d ∈ Dτ

I valS,β(∃ τ x ; φ) = T iff valS,βd
x

(φ) = T for at least one d ∈ Dτ

SEFM: DL 1 /GU 141009 19 / 45

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

valS,β(φ) for φ ∈ For

I valS,β(p(t1, . . . , tr)) = T iff (valS,β(t1), . . . , valS,β(tr)) ∈ I(p)

I valS,β(φ ∧ ψ) = T iff valS,β(φ) = T and valS,β(ψ) = T

I . . . as in propositional logic

I valS,β(∀ τ x ; φ) = T iff valS,βd
x

(φ) = T for all d ∈ Dτ

I valS,β(∃ τ x ; φ) = T iff valS,βd
x

(φ) = T for at least one d ∈ Dτ

SEFM: DL 1 /GU 141009 19 / 45

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

valS,β(φ) for φ ∈ For

I valS,β(p(t1, . . . , tr)) = T iff (valS,β(t1), . . . , valS,β(tr)) ∈ I(p)

I valS,β(φ ∧ ψ) = T iff valS,β(φ) = T and valS,β(ψ) = T

I . . . as in propositional logic

I valS,β(∀ τ x ; φ) = T iff valS,βd
x

(φ) = T for all d ∈ Dτ

I valS,β(∃ τ x ; φ) = T iff valS,βd
x

(φ) = T for at least one d ∈ Dτ

SEFM: DL 1 /GU 141009 19 / 45

Semantic Evaluation of Formulas

Definition (Valuation of Formulas)

valS,β(φ) for φ ∈ For

I valS,β(p(t1, . . . , tr)) = T iff (valS,β(t1), . . . , valS,β(tr)) ∈ I(p)

I valS,β(φ ∧ ψ) = T iff valS,β(φ) = T and valS,β(ψ) = T

I . . . as in propositional logic

I valS,β(∀ τ x ; φ) = T iff valS,βd
x

(φ) = T for all d ∈ Dτ

I valS,β(∃ τ x ; φ) = T iff valS,βd
x

(φ) = T for at least one d ∈ Dτ

SEFM: DL 1 /GU 141009 19 / 45

Semantic Evaluation of Formulas Cont’d

Example

Signature: int j; int f(int); Object obj; <(int,int);

D = {17, 2, o}, Dint = {17, 2}, DObject = {o}

I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

I valS,β(f (j) < j) ?

I valS,β(∃ int x ; f (x) = x) ?

I valS,β(∀ Object o1; ∀ Object o2; o1 = o2) ?

SEFM: DL 1 /GU 141009 20 / 45

Semantic Evaluation of Formulas Cont’d

Example

Signature: int j; int f(int); Object obj; <(int,int);

D = {17, 2, o}, Dint = {17, 2}, DObject = {o}

I(j) = 17
I(obj) = o

Dint I(f)

2 2
17 2

Dint ×Dint in I(<)?

(2, 2) F
(2, 17) T
(17, 2) F

(17, 17) F

I valS,β(f (j) < j) ?

I valS,β(∃ int x ; f (x) = x) ?

I valS,β(∀ Object o1; ∀ Object o2; o1 = o2) ?

SEFM: DL 1 /GU 141009 20 / 45

Semantic Notions

Definition (Satisfiability, Truth, Validity)

valS,β(φ) = T (S, β satisfies φ)
S |= φ iff for all β : valS,β(φ) = T (φ is true in S)
|= φ iff for all S : S |= φ (φ is valid)

Example

I f (j) < j is true in S
I ∃ int x ; i = x is valid

I ∃ int x ; ¬(x = x) is not satisfiable

SEFM: DL 1 /GU 141009 21 / 45

Semantic Notions

Definition (Satisfiability, Truth, Validity)

valS,β(φ) = T (S, β satisfies φ)
S |= φ iff for all β : valS,β(φ) = T (φ is true in S)
|= φ iff for all S : S |= φ (φ is valid)

Example

I f (j) < j is true in S
I ∃ int x ; i = x is valid

I ∃ int x ; ¬(x = x) is not satisfiable

SEFM: DL 1 /GU 141009 21 / 45

Part III

Towards Dynamic Logic

SEFM: DL 1 /GU 141009 22 / 45

Type Hierarchy

First, we refine the type system of FOL:

Definition (Type Hierarchy)

I TΣ is set of types

I Given subtype relation ‘v’, with top element ‘any ’

I τ v any for all τ ∈ TΣ

Example (A Minimal Type Hierarchy)

T = {any}
All signature symbols have same type any .

Example (Type Hierarchy for Java)

(see next slide)

SEFM: DL 1 /GU 141009 23 / 45

Type Hierarchy

First, we refine the type system of FOL:

Definition (Type Hierarchy)

I TΣ is set of types

I Given subtype relation ‘v’, with top element ‘any ’

I τ v any for all τ ∈ TΣ

Example (A Minimal Type Hierarchy)

T = {any}
All signature symbols have same type any .

Example (Type Hierarchy for Java)

(see next slide)

SEFM: DL 1 /GU 141009 23 / 45

Modelling Java in FOL: Fixing a Type Hierarchy

Signature based on Java’s type hierarchy (simplified)

any

booleanint Object

API, user-defined classes

Null

Each class in API and target program is a type, with appropriate
subtyping.

SEFM: DL 1 /GU 141009 24 / 45

Modelling Classes and Fields in FOL

Modeling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I domain of all Person objects: DPerson

I each o ∈ DPerson has associated age value

I I(age) is mapping from DPerson to Dint

I for each class C with field τ a:
FSym declares function τ a(C);

Field Access

Signature FSym: int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation for FOL p.age >= 0

Navigation expressions in KeY look exactly as in Java/JML

SEFM: DL 1 /GU 141009 25 / 45

Modelling Classes and Fields in FOL

Modeling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I domain of all Person objects: DPerson

I each o ∈ DPerson has associated age value

I I(age) is mapping from DPerson to Dint

I for each class C with field τ a:
FSym declares function τ a(C);

Field Access

Signature FSym: int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation for FOL p.age >= 0

Navigation expressions in KeY look exactly as in Java/JML

SEFM: DL 1 /GU 141009 25 / 45

Modelling Classes and Fields in FOL

Modeling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I domain of all Person objects: DPerson

I each o ∈ DPerson has associated age value

I I(age) is mapping from DPerson to Dint

I for each class C with field τ a:
FSym declares function τ a(C);

Field Access

Signature FSym: int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation for FOL p.age >= 0

Navigation expressions in KeY look exactly as in Java/JML

SEFM: DL 1 /GU 141009 25 / 45

Modelling Classes and Fields in FOL

Modeling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I domain of all Person objects: DPerson

I each o ∈ DPerson has associated age value

I I(age) is mapping from DPerson to Dint

I for each class C with field τ a:
FSym declares function τ a(C);

Field Access

Signature FSym: int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation for FOL p.age >= 0

Navigation expressions in KeY look exactly as in Java/JML

SEFM: DL 1 /GU 141009 25 / 45

Modelling Classes and Fields in FOL

Modeling instance fields

Person
int age
int id

int setAge(int newAge)
int getId()

I domain of all Person objects: DPerson

I each o ∈ DPerson has associated age value

I I(age) is mapping from DPerson to Dint

I for each class C with field τ a:
FSym declares function τ a(C);

Field Access

Signature FSym: int age(Person); Person p;

Java/JML expression p.age >= 0

Typed FOL age(p)>=0

KeY postfix notation for FOL p.age >= 0

Navigation expressions in KeY look exactly as in Java/JML
SEFM: DL 1 /GU 141009 25 / 45

Dynamic View

Only static properties expressable in typed FOL, e.g.,

I Values of fields in a certain range

I Property (invariant) of a subclass implies property of a superclass

I ...

Considers only one state at a time.

Goal: Express functional properties of a program, e.g.

If method setAge is called on an object o of type Person

and the method argument newAge is positive
then afterwards field age has same value as newAge.

SEFM: DL 1 /GU 141009 26 / 45

Dynamic View

Only static properties expressable in typed FOL, e.g.,

I Values of fields in a certain range

I Property (invariant) of a subclass implies property of a superclass

I ...

Considers only one state at a time.

Goal: Express functional properties of a program, e.g.

If method setAge is called on an object o of type Person

and the method argument newAge is positive
then afterwards field age has same value as newAge.

SEFM: DL 1 /GU 141009 26 / 45

Dynamic View

Only static properties expressable in typed FOL, e.g.,

I Values of fields in a certain range

I Property (invariant) of a subclass implies property of a superclass

I ...

Considers only one state at a time.

Goal: Express functional properties of a program, e.g.

If method setAge is called on an object o of type Person

and the method argument newAge is positive
then afterwards field age has same value as newAge.

SEFM: DL 1 /GU 141009 26 / 45

Dynamic View

Only static properties expressable in typed FOL, e.g.,

I Values of fields in a certain range

I Property (invariant) of a subclass implies property of a superclass

I ...

Considers only one state at a time.

Goal: Express functional properties of a program, e.g.

If method setAge is called on an object o of type Person

and the method argument newAge is positive
then afterwards field age has same value as newAge.

SEFM: DL 1 /GU 141009 26 / 45

Dynamic View

Only static properties expressable in typed FOL, e.g.,

I Values of fields in a certain range

I Property (invariant) of a subclass implies property of a superclass

I ...

Considers only one state at a time.

Goal: Express functional properties of a program, e.g.

If method setAge is called on an object o of type Person

and the method argument newAge is positive
then afterwards field age has same value as newAge.

SEFM: DL 1 /GU 141009 26 / 45

Observation

Need a logic that allows us to

I relate different program states, i.e., before and after execution,
within one formula

I program variables/fields represented by
constant/function symbols that depend on program state

Dynamic Logic meets the above requirements.

SEFM: DL 1 /GU 141009 27 / 45

Observation

Need a logic that allows us to

I relate different program states, i.e., before and after execution,
within one formula

I program variables/fields represented by
constant/function symbols that depend on program state

Dynamic Logic meets the above requirements.

SEFM: DL 1 /GU 141009 27 / 45

Observation

Need a logic that allows us to

I relate different program states, i.e., before and after execution,
within one formula

I program variables/fields represented by
constant/function symbols that depend on program state

Dynamic Logic meets the above requirements.

SEFM: DL 1 /GU 141009 27 / 45

Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + ... (later)

An Example

i > 5 → [i = i + 10;]i > 15

Meaning?

If program variable i is greater than 5, then after executing i = i + 10;,
i is greater than 15.

SEFM: DL 1 /GU 141009 28 / 45

Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + ... (later)

An Example

i > 5 → [i = i + 10;]i > 15

Meaning?

If program variable i is greater than 5, then after executing i = i + 10;,
i is greater than 15.

SEFM: DL 1 /GU 141009 28 / 45

Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + ... (later)

An Example

i > 5 → [i = i + 10;]i > 15

Meaning?

If program variable i is greater than 5, then after executing i = i + 10;,
i is greater than 15.

SEFM: DL 1 /GU 141009 28 / 45

Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + ... (later)

An Example

i > 5 → [i = i + 10;]i > 15

Meaning?

If program variable i is greater than 5, then after executing i = i + 10;,
i is greater than 15.

SEFM: DL 1 /GU 141009 28 / 45

Dynamic Logic

(Java) Dynamic Logic

Typed FOL

I + programs p

I + modalities 〈p〉φ, [p]φ (p program, φ DL formula)

I + ... (later)

An Example

i > 5 → [i = i + 10;]i > 15

Meaning?

If program variable i is greater than 5, then after executing i = i + 10;,
i is greater than 15.

SEFM: DL 1 /GU 141009 28 / 45

Program Variables

Dynamic Logic = Typed FOL + . . .

i > 5 → [i = i + 10;]i > 15

Program variable i refers to different values before and after execution of
a program.

I Program variables like i are state-dependent constant symbols.

I Value of state dependent symbols changeable by program.

Three words one meaning: flexible, state-dependent, non-rigid

SEFM: DL 1 /GU 141009 29 / 45

Program Variables

Dynamic Logic = Typed FOL + . . .

i > 5 → [i = i + 10;]i > 15

Program variable i refers to different values before and after execution of
a program.

I Program variables like i are state-dependent constant symbols.

I Value of state dependent symbols changeable by program.

Three words one meaning: flexible, state-dependent, non-rigid

SEFM: DL 1 /GU 141009 29 / 45

Rigid versus Flexible Symbols

Signature of dynamic logic defined as in FOL, but:
In addition there are flexible symbols

Rigid versus Flexible

I Rigid symbols, same interpretation in all program states

I First-order variables (aka logical variables)
I Built-in functions and predicates such as 0,1,...,+,*,...,<,...

I Flexible (or non-rigid) symbols, interpretation depends on state

Capture side effects on state during program execution

I Functions modeling program variables and fields are flexible

Any term containing at least one flexible symbol is also flexible

SEFM: DL 1 /GU 141009 30 / 45

Signature of Dynamic Logic

Definition (Dynamic Logic Signature)

Σ = (PSymr , FSymr , FSymf , α), FSymr ∩ FSymf = ∅

Rigid Predicate Symbols PSymr = {>, >=, . . .}
Rigid Function Symbols FSymr = {+, −, ∗, 0, 1, . . .}
Flexible Function Symbols FSymf = {i , j , k , . . .}

Standard typing: boolean TRUE; <(int,int); etc.

Flexible constant/function symbols FSymf used to model

I program variables (flexible constants) and

I fields (flexible unary functions)

SEFM: DL 1 /GU 141009 31 / 45

Dynamic Logic Signature - KeY input file

\sorts {

// only additional sorts (predefined: int/boolean/any)
}

\functions {

// only additional rigid functions

// (arithmetic functions like +,- etc. predefined)

}

\predicates { /* same as for functions */ }

\programVariables { // flexible functions

int i, j;

boolean b;

}

Empty sections can be left out.

SEFM: DL 1 /GU 141009 32 / 45

Dynamic Logic Signature - KeY input file

\sorts {

// only additional sorts (predefined: int/boolean/any)
}

\functions {

// only additional rigid functions

// (arithmetic functions like +,- etc. predefined)

}

\predicates { /* same as for functions */ }

\programVariables { // flexible functions

int i, j;

boolean b;

}

Empty sections can be left out.

SEFM: DL 1 /GU 141009 32 / 45

Variables

Logical Variables

Typed logical variables (rigid), declared locally in quantifiers as T x;

Program Variables

Flexible constants int i; boolean p; used as program variables

SEFM: DL 1 /GU 141009 33 / 45

Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs . . .
Programs here: any legal sequence of Java statements.

Example

Signature for FSymf : int r; int i; int n;

Signature for FSymr : int 0; int +(int,int); int -(int,int);

Signature for PSymr : <(int,int);

i=0;

r=0;

while (i<n) {

i=i+1;

r=r+i;

}

r=r+r-n;

Which value does the program compute in r?

SEFM: DL 1 /GU 141009 34 / 45

Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs . . .
Programs here: any legal sequence of Java statements.

Example

Signature for FSymf : int r; int i; int n;

Signature for FSymr : int 0; int +(int,int); int -(int,int);

Signature for PSymr : <(int,int);

i=0;

r=0;

while (i<n) {

i=i+1;

r=r+i;

}

r=r+r-n;

Which value does the program compute in r?

SEFM: DL 1 /GU 141009 34 / 45

Dynamic Logic Programs

Dynamic Logic = Typed FOL + programs . . .
Programs here: any legal sequence of Java statements.

Example

Signature for FSymf : int r; int i; int n;

Signature for FSymr : int 0; int +(int,int); int -(int,int);

Signature for PSymr : <(int,int);

i=0;

r=0;

while (i<n) {

i=i+1;

r=r+i;

}

r=r+r-n;

Which value does the program compute in r?

SEFM: DL 1 /GU 141009 34 / 45

Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

I 〈p〉φ (diamond)

I [p]φ (box)

with p a program, φ another DL formula

Intuitive Meaning

I 〈p〉φ: p terminates and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates then formula φ holds in final state
(partial correctness)

Attention: Java programs are deterministic, i.e., if a Java program
terminates then exactly one state is reached from a given initial state.

SEFM: DL 1 /GU 141009 35 / 45

Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

I 〈p〉φ (diamond)

I [p]φ (box)

with p a program, φ another DL formula

Intuitive Meaning

I 〈p〉φ: p terminates and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates then formula φ holds in final state
(partial correctness)

Attention: Java programs are deterministic, i.e., if a Java program
terminates then exactly one state is reached from a given initial state.

SEFM: DL 1 /GU 141009 35 / 45

Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

I 〈p〉φ (diamond)

I [p]φ (box)

with p a program, φ another DL formula

Intuitive Meaning

I 〈p〉φ: p terminates and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates then formula φ holds in final state
(partial correctness)

Attention: Java programs are deterministic, i.e., if a Java program
terminates then exactly one state is reached from a given initial state.

SEFM: DL 1 /GU 141009 35 / 45

Relating Program States: Modalities

DL extends FOL with two additional (mix-fix) operators:

I 〈p〉φ (diamond)

I [p]φ (box)

with p a program, φ another DL formula

Intuitive Meaning

I 〈p〉φ: p terminates and formula φ holds in final state
(total correctness)

I [p]φ: If p terminates then formula φ holds in final state
(partial correctness)

Attention: Java programs are deterministic, i.e., if a Java program
terminates then exactly one state is reached from a given initial state.

SEFM: DL 1 /GU 141009 35 / 45

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:

1. i = old i→ 〈i = i + 1;〉i > old i

If i = i + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .

2. i = old i→ [while(true){i = old i - 1;}]i > old i

If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.

3. ∀ x . (〈p〉 i = x ↔ 〈q〉 i = x)
p and q are equivalent concerning termination and the final value

of i.

SEFM: DL 1 /GU 141009 36 / 45

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:

1. i = old i→ 〈i = i + 1;〉i > old i

If i = i + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .

2. i = old i→ [while(true){i = old i - 1;}]i > old i

If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.

3. ∀ x . (〈p〉 i = x ↔ 〈q〉 i = x)
p and q are equivalent concerning termination and the final value

of i.

SEFM: DL 1 /GU 141009 36 / 45

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:

1. i = old i→ 〈i = i + 1;〉i > old i

If i = i + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .

2. i = old i→ [while(true){i = old i - 1;}]i > old i

If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.

3. ∀ x . (〈p〉 i = x ↔ 〈q〉 i = x)
p and q are equivalent concerning termination and the final value

of i.

SEFM: DL 1 /GU 141009 36 / 45

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:

1. i = old i→ 〈i = i + 1;〉i > old i

If i = i + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .

2. i = old i→ [while(true){i = old i - 1;}]i > old i

If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.

3. ∀ x . (〈p〉 i = x ↔ 〈q〉 i = x)

p and q are equivalent concerning termination and the final value
of i.

SEFM: DL 1 /GU 141009 36 / 45

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:

1. i = old i→ 〈i = i + 1;〉i > old i

If i = i + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .

2. i = old i→ [while(true){i = old i - 1;}]i > old i

If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.

3. ∀ x . (〈p〉 i = x ↔ 〈q〉 i = x)

p and q are equivalent concerning termination and the final value
of i.

SEFM: DL 1 /GU 141009 36 / 45

Dynamic Logic - Examples

Let i, j, old_i, old_j denote program variables.
Give the meaning in natural language:

1. i = old i→ 〈i = i + 1;〉i > old i

If i = i + 1; is executed in a state where i and old_i have the
same value, then the program terminates and in its final state the
value of i is greater than the value of old_i .

2. i = old i→ [while(true){i = old i - 1;}]i > old i

If the program is executed in a state where i and old_i have the
same value and if the program terminates then in its final state the
value of i is greater than the value of old_i.

3. ∀ x . (〈p〉 i = x ↔ 〈q〉 i = x)
p and q are equivalent concerning termination and the final value

of i.

SEFM: DL 1 /GU 141009 36 / 45

Dynamic Logic - KeY input file

KeY

\programVariables { // Declares global program variables

int i, j;

int old_i, old_j;

}

\problem { // The problem to verify is stated here

i = old_i -> \<{ i = i + 1; }\> i > old_i

}

KeY

Visibility: Program variables declared

I global can be accessed anywhere in the formula.

I inside modality like pre → 〈int j; p〉post only visible in p

SEFM: DL 1 /GU 141009 37 / 45

Dynamic Logic - KeY input file

KeY

\programVariables { // Declares global program variables

int i, j;

int old_i, old_j;

}

\problem { // The problem to verify is stated here

i = old_i -> \<{ i = i + 1; }\> i > old_i

}

KeY

Visibility: Program variables declared

I global can be accessed anywhere in the formula.

I inside modality like pre → 〈int j; p〉post only visible in p

SEFM: DL 1 /GU 141009 37 / 45

Dynamic Logic - KeY input file

KeY

\programVariables { // Declares global program variables

int i, j;

int old_i, old_j;

}

\problem { // The problem to verify is stated here

i = old_i -> \<{ i = i + 1; }\> i > old_i

}

KeY

Visibility: Program variables declared

I global can be accessed anywhere in the formula.

I inside modality like pre → 〈int j; p〉post only visible in p

SEFM: DL 1 /GU 141009 37 / 45

Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

I Each FOL formula is a DL formula

I If p is a program and φ a DL formula then

{
〈p〉φ
[p]φ

}
is a DL formula

I DL formulas closed under FOL quantifiers and connectives

I Program variables are flexible constants: never bound in quantifiers

I Program variables need not be declared or initialized in program

I Programs contain no logical variables

I Modalities can be arbitrarily nested

SEFM: DL 1 /GU 141009 38 / 45

Dynamic Logic Formulas

Definition (Dynamic Logic Formulas (DL Formulas))

I Each FOL formula is a DL formula

I If p is a program and φ a DL formula then

{
〈p〉φ
[p]φ

}
is a DL formula

I DL formulas closed under FOL quantifiers and connectives

I Program variables are flexible constants: never bound in quantifiers

I Program variables need not be declared or initialized in program

I Programs contain no logical variables

I Modalities can be arbitrarily nested

SEFM: DL 1 /GU 141009 38 / 45

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

I ∀ int y ; ((〈x = 2;〉x = y) ↔ (〈x = 1; x++;〉x = y))

Well-formed if FSymf contains int x;

I ∃ int x ; [x = 1;](x = 1)

Not well-formed, because logical variable occurs in program

I 〈x = 1;〉([while (true) {}]false)

Well-formed if FSymf contains int x;

program formulas can be nested

SEFM: DL 1 /GU 141009 39 / 45

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

I ∀ int y ; ((〈x = 2;〉x = y) ↔ (〈x = 1; x++;〉x = y))

Well-formed if FSymf contains int x;

I ∃ int x ; [x = 1;](x = 1)

Not well-formed, because logical variable occurs in program

I 〈x = 1;〉([while (true) {}]false)

Well-formed if FSymf contains int x;

program formulas can be nested

SEFM: DL 1 /GU 141009 39 / 45

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

I ∀ int y ; ((〈x = 2;〉x = y) ↔ (〈x = 1; x++;〉x = y))

Well-formed if FSymf contains int x;

I ∃ int x ; [x = 1;](x = 1)

Not well-formed, because logical variable occurs in program

I 〈x = 1;〉([while (true) {}]false)

Well-formed if FSymf contains int x;

program formulas can be nested

SEFM: DL 1 /GU 141009 39 / 45

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

I ∀ int y ; ((〈x = 2;〉x = y) ↔ (〈x = 1; x++;〉x = y))

Well-formed if FSymf contains int x;

I ∃ int x ; [x = 1;](x = 1)

Not well-formed, because logical variable occurs in program

I 〈x = 1;〉([while (true) {}]false)

Well-formed if FSymf contains int x;

program formulas can be nested

SEFM: DL 1 /GU 141009 39 / 45

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

I ∀ int y ; ((〈x = 2;〉x = y) ↔ (〈x = 1; x++;〉x = y))

Well-formed if FSymf contains int x;

I ∃ int x ; [x = 1;](x = 1)

Not well-formed, because logical variable occurs in program

I 〈x = 1;〉([while (true) {}]false)

Well-formed if FSymf contains int x;

program formulas can be nested

SEFM: DL 1 /GU 141009 39 / 45

Dynamic Logic Formulas Cont’d

Example (Well-formed? If yes, under which signature?)

I ∀ int y ; ((〈x = 2;〉x = y) ↔ (〈x = 1; x++;〉x = y))

Well-formed if FSymf contains int x;

I ∃ int x ; [x = 1;](x = 1)

Not well-formed, because logical variable occurs in program

I 〈x = 1;〉([while (true) {}]false)

Well-formed if FSymf contains int x;

program formulas can be nested

SEFM: DL 1 /GU 141009 39 / 45

Dynamic Logic Semantics: States

First-order state can be considered as program state

I Interpretation of flexible symbols can vary from state to state

(eg, program variables, field values)

I Interpretation of rigid symbols is the same in all states

(eg, built-in functions and predicates)

Program states as first-order states

From now, consider program state s as first-order state (D, δ, I)

I Only interpretation I of flexible symbols in FSymf can change

I States is set of all states s

SEFM: DL 1 /GU 141009 40 / 45

Kripke Structure

Definition (Kripke Structure)

Kripke structure or Labelled transition system K = (States, ρ)

I State (=first-order model) s = (D, δ, I) ∈ States

I Transition relation ρ : Program→ (States ⇀ States)

ρ(p)(s1) = s2
iff.

program p executed in state s1 terminates and its final state is s2,
otherwise undefined.

I ρ is the semantics of programs ∈ Program

I ρ(p)(s) can be undefined (‘⇀’):
p may not terminate when started in s

I Our programs are deterministic (unlike Promela):
ρ(p) is a function (at most one value)

SEFM: DL 1 /GU 141009 41 / 45

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

I s |= 〈p〉φ iff ρ(p)(s) is defined and ρ(p)(s) |= φ

(p terminates and φ is true in the final state after execution)

I s |= [p]φ iff ρ(p)(s) |= φ whenever ρ(p)(s) is defined

(If p terminates then φ is true in the final state after execution)

I Duality: 〈p〉φ iff ¬[p]¬φ
Exercise: justify this with help of semantic definitions

I Implication: if 〈p〉φ then [p]φ
Total correctness implies partial correctness

I converse is false
I holds only for deterministic programs

SEFM: DL 1 /GU 141009 42 / 45

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

I s |= 〈p〉φ iff ρ(p)(s) is defined and ρ(p)(s) |= φ

(p terminates and φ is true in the final state after execution)

I s |= [p]φ iff ρ(p)(s) |= φ whenever ρ(p)(s) is defined

(If p terminates then φ is true in the final state after execution)

I Duality: 〈p〉φ iff ¬[p]¬φ
Exercise: justify this with help of semantic definitions

I Implication: if 〈p〉φ then [p]φ
Total correctness implies partial correctness

I converse is false
I holds only for deterministic programs

SEFM: DL 1 /GU 141009 42 / 45

Semantic Evaluation of Program Formulas

Definition (Validity Relation for Program Formulas)

I s |= 〈p〉φ iff ρ(p)(s) is defined and ρ(p)(s) |= φ

(p terminates and φ is true in the final state after execution)

I s |= [p]φ iff ρ(p)(s) |= φ whenever ρ(p)(s) is defined

(If p terminates then φ is true in the final state after execution)

I Duality: 〈p〉φ iff ¬[p]¬φ
Exercise: justify this with help of semantic definitions

I Implication: if 〈p〉φ then [p]φ
Total correctness implies partial correctness

I converse is false
I holds only for deterministic programs

SEFM: DL 1 /GU 141009 42 / 45

More Examples

valid?
meaning?

Example

∀ τ y ; ((〈p〉x = y) ↔ (〈q〉x = y))

Not valid in general

Programs p behave q equivalently on variable τ x

Example

∃ τ y ; (x = y → 〈p〉true)

Not valid in general

Program p terminates if initial value of x is suitably chosen

SEFM: DL 1 /GU 141009 43 / 45

More Examples

valid?
meaning?

Example

∀ τ y ; ((〈p〉x = y) ↔ (〈q〉x = y))

Not valid in general

Programs p behave q equivalently on variable τ x

Example

∃ τ y ; (x = y → 〈p〉true)

Not valid in general

Program p terminates if initial value of x is suitably chosen

SEFM: DL 1 /GU 141009 43 / 45

More Examples

valid?
meaning?

Example

∀ τ y ; ((〈p〉x = y) ↔ (〈q〉x = y))

Not valid in general

Programs p behave q equivalently on variable τ x

Example

∃ τ y ; (x = y → 〈p〉true)

Not valid in general

Program p terminates if initial value of x is suitably chosen

SEFM: DL 1 /GU 141009 43 / 45

More Examples

valid?
meaning?

Example

∀ τ y ; ((〈p〉x = y) ↔ (〈q〉x = y))

Not valid in general

Programs p behave q equivalently on variable τ x

Example

∃ τ y ; (x = y → 〈p〉true)

Not valid in general

Program p terminates if initial value of x is suitably chosen

SEFM: DL 1 /GU 141009 43 / 45

Semantics of Programs

In labelled transition system K = (States, ρ):
ρ : Program→ (States ⇀ States) is semantics of programs p ∈ Program

ρ defined recursively on programs

Example (Semantics of assignment)

States s interpret flexible symbols f with Is(f)

ρ(x=t;)(s) = s ′ where s ′ identical to s except Is′(x) = vals(t)

Very tedious task to define ρ for Java. ⇒ Not in this course.
Next lecture, we go directly to calculus for program formulas!

SEFM: DL 1 /GU 141009 44 / 45

Semantics of Programs

In labelled transition system K = (States, ρ):
ρ : Program→ (States ⇀ States) is semantics of programs p ∈ Program

ρ defined recursively on programs

Example (Semantics of assignment)

States s interpret flexible symbols f with Is(f)

ρ(x=t;)(s) = s ′ where s ′ identical to s except Is′(x) = vals(t)

Very tedious task to define ρ for Java. ⇒ Not in this course.
Next lecture, we go directly to calculus for program formulas!

SEFM: DL 1 /GU 141009 44 / 45

Semantics of Programs

In labelled transition system K = (States, ρ):
ρ : Program→ (States ⇀ States) is semantics of programs p ∈ Program

ρ defined recursively on programs

Example (Semantics of assignment)

States s interpret flexible symbols f with Is(f)

ρ(x=t;)(s) = s ′ where s ′ identical to s except Is′(x) = vals(t)

Very tedious task to define ρ for Java. ⇒ Not in this course.
Next lecture, we go directly to calculus for program formulas!

SEFM: DL 1 /GU 141009 44 / 45

Literature for this Lecture

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 10: Using KeY

KeY Book Verification of Object-Oriented Software (see course web
page), Chapter 3: Dynamic Logic (Sections 3.1, 3.2, 3.4,
3.5, 3.6.1, 3.6.3, 3.6.4)

SEFM: DL 1 /GU 141009 45 / 45

	Titlepage
	Where are we?
	First-Order Semantics
	Domain
	State
	Variable Assignment
	Term Valuation
	Formula Valuation
	Semantic Notions

	Towards Dynamic Logic
	Type Hierarchy
	Type Hierarchy
	Modelling in FOL
	Signature
	Terms
	Program Formulas
	States
	Program Formula Valuation
	Semantics
	Literature

