
Compiler construction 2014

Lecture 8

More on code optimization

SSA form

Constant propagation

Common subexpression elimination

Loop optimizations

An example of optimization in LLVM

int f () {

int i, j, k;

i = 8;

j = 1;

k = 1;

while (i != j) {

if (i==8)

k = 0;

else

i++;

i = i+k;

j++;

}

return i;

}

Comments
Human reader sees, with some
effort, that the C/Javalette function
f returns 8.

We follow how LLVM:s
optimizations will discover this
fact.

Step 1: Naive translation to LLVM
define i32 @f() {

entry:

%i = alloca i32

%j = alloca i32

%k = alloca i32

store i32 8, i32* %i

store i32 1, i32* %j

store i32 1, i32* %k

br label %while.cond

while.cond:

%tmp = load i32* %i

%tmp1 = load i32* %j

%cmp = icmp ne i32 %tmp, %tmp1

br i1 %cmp, label %while.body,

label %while.end

while.body:

%tmp2 = load i32* %i

%cmp3 = icmp eq i32 %tmp2, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

store i32 0, i32* %k

br label %if.end

if.else:

%tmp4 = load i32* %i

%inc = add i32 %tmp4, 1

store i32 %inc, i32* %i

br label %if.end

if.end:

%tmp5 = load i32* %i

%tmp6 = load i32* %k

%add = add i32 %tmp5, %tmp6

store i32 %add, i32* %i

%tmp7 = load i32* %j

%inc8 = add i32 %tmp7, 1

store i32 %inc8, i32* %j

br label %while.cond

while.end:

%tmp9 = load i32* %i

ret i32 %tmp9

}

Step 2: Translating to SSA form (opt -mem2reg)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%k.1 = phi i32 [ 1, %entry ],

[ %k.0, %if.end ]

%j.0 = phi i32 [ 1, %entry ],

[ %inc8, %if.end ]

%i.1 = phi i32 [ 8, %entry ],

[ %add, %if.end ]

%cmp = icmp ne i32 %i.1, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

%cmp3 = icmp eq i32 %i.1, 8

br i1 %cmp3, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

%inc = add i32 %i.1, 1

br label %if.end

if.end:

%k.0 = phi i32 [ 0, %if.then ],

[ %k.1, %if.else ]

%i.0 = phi i32 [ %i.1, %if.then ],

[ %inc, %if.else ]

%add = add i32 %i.0, %k.0

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 %i.1

}



Step 3: Sparse Conditional Constant Propagation
(opt -sccp)

define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [ 1, %entry ],

[ %inc8, %if.end ]

%k.1 = phi i32 [ 1, %entry ],

[ 0, %if.end ]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %while.body,

label %while.end

while.body:

br i1 true, label %if.then,

label %if.else

if.then:

br label %if.end

if.else:

br label %if.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

Step 4: CFG Simplification (opt -simplifycfg)
define i32 @f() {

entry:

br label %while.cond

while.cond:

%j.0 = phi i32 [ 1, %entry ],

[ %inc8, %if.end ]

%k.1 = phi i32 [ 1, %entry ],

[ 0, %if.end ]

%cmp = icmp ne i32 8, %j.0

br i1 %cmp, label %if.end,

label %while.end

if.end:

%inc8 = add i32 %j.0, 1

br label %while.cond

while.end:

ret i32 8

}

Comments
If the function terminates, the
return value is 8.

opt has not yet detected that the
loop is certain to terminate.

Step 5: Dead Loop Deletion (opt -loop-deletion)

define i32 @f() {

entry:

br label %while.end

while.end:

ret i32 8

}

One more -simplifycfg step
yields finally

define i32 @f() {

entry:

ret i32 8

}

For realistic code, dozens of passes are performed, some of them
repeatedly. Many heuristics are used to determine order.

Use opt -std-compile-opts for a default selection.

Static Single Assignment form

Def-use chains
Dataflow analysis often needs to connect a definition with its uses
and, conversely, find all definitions reaching a use.
This can be simplified if each variable has only one definition.

A new form of IR
Three-address code can be converted to SSA form by renaming
variables so that each variable has just one definition.

A non-example
s := 0

x := 1

s := s + x

x := x + 1

Converted to SSA
s1 := 0

x1 := 1

s2 := s1 + x1

x2 := x1 + 1



Conversion to SSA

A harder example
s := 0

x := 1

L1: if x > n goto L2

s := s + x

x := x + 1

goto L1

L2:

Note the def/use difficulty:
In s + x, which def of s does the
use refer to?

Conversion started
s1 := 0

x1 := 1

L1: if x > n goto L2

s2 := s? + x?

x2 := x? + 1

goto L1

L2:

What should replace the three
’?’ ?

An artificial device: φ-functions

Naive version
First pass: Add “definitions” of the form
x := φ(x , . . . , x) in the beginning of each block with several
predecessors and for each variable.
Second pass: Do renumbering.

After 1st pass
s := 0

x := 1

L1: s := φ(s,s)
x := φ(x,x)
if x > n goto L2

s := s + x

x := x + 1

goto L1

L2:

After 2nd pass
s1 := 0

x1 := 1

L1: s3 := φ(s1,s2)
x3 := φ(x1,x2)
if x3 > n goto L2

s2 := s3 + x3

x2 := x3 + 1

goto L1

L2:

What are φ-functions?

A device during optimization

Think of φ-functions as function calls during optimization.
Later, some of them will be eliminated (e.g. by dead code
elimination).
Others will after optimization be transformed to real code.
Idea: x3 := φ(x1,x2) will be transformed to an instruction
x3 := x1 at the end of left predecessor and x3 := x2 at end of
right predecessor.

Advantages

Many analyses become much simpler when code is in SSA form.

Main reason: we see immediately for each use of a variable where
it was defined.

Step 2 of example revisited: To SSA form



Computing SSA form; algorithm

We already did this

Yes, but the conversion inserts unnecessary φ-functions and is too
inefficient – the gains in analysis with SSA form may be lost in
conversion.

Better algorithms

There are algorithms for finding the right number of φ-functions
needed.
These are based on the notion of dominance; if you intend to use
SSA form, you need to learn about that – or use LLVM, which has
tools to do it for you.

Simple constant propagation

A dataflow analysis based on SSA form

Uses values from a lattice L with elements
>: Not a constant, as far as the analysis can tell.
c1, c2, c3, . . .: The value is constant, as indicated.
⊥: Yet unknown, may be constant.
Each variable v is assigned an initial value val(v) ∈ L:
Variables with definitions v := c get val(v) = c,
input variables/parameters v get val(v) = >,
and the rest get val(v) = ⊥.

The lattice L

c1   c2   c3   c4    . . .

The lattice order
⊥ ≤ c ≤ > for all c.
ci and cj not related.

Propagation phase, 1

Iteration

Initially, place all names n with val(n) 6= > on a worklist.
Iterate by picking a name from the worklist, examining its uses and
computing val of the RHS’s, using rules as

0 · x = 0 (for any x)

x · ⊥ = ⊥
x · > = > (x 6= 0)

plus ordinary multiplication for constant operands.

For φ-functions, we take the join ∨ of the arguments, where
⊥ ∨ x = x for all x , > ∨ x = > for all x , and

ci ∨ cj =

{
>, if ci 6= cj

ci , otherwise.

Propagation phase, 2

Iteration, continued
Update val for the defined variables, putting variables that get a
new value back on the worklist.
Terminate when worklist is empty.

Termination
Values of variables on the worklist can only increase (in lattice
order) during iteration. Each value can only have its value
increased twice.

A disappointment

In our running example, this algorithm will terminate with all
variables having value >.

We need to take reachability into account.



Sparse Conditional Constant Propagation

Sketch of algorithm

Uses also a worklist of
reachable blocks.

Initially, only the entry block is
reachable.

In evaluation of φ functions,
only ⊥ flows from
unreachable blocks.

New blocks added to worklist
when elaborating terminating
instructions.

Result for running example as
shown to the right

Correctness of SCCP

A combination of two dataflow analyses

Sparse conditional constant propagation can be seen as the
combination of simple constant propagation and reachability
analysis/dead code analysis.

Both of these can be expressed as dataflow problems and a
framework can be devised where the correctness of such
combination can be proved.

Final steps

Control flow graph simplification

Fairly simple pass; SCCP does not change graph structure of CFG
even when “obvious” simplifications can be done.

Dead Loop Elimination

Identifies an induction variable (namely j), which

increases with 1 for each loop iteration,

terminates the loop when reaching a known value,

is initialised to a smaller value.

When such a variable is found, loop termination is guaranteed and
the loop can be removed.

Common subexpression elimination

Problem
We want to avoid re-computing an expression; instead we want to
use the previously computed value.

Code example
a := b + c

b := a - d

c := b + c

d := a - d

Notes
The second occurrence of a - d

should not be computed;
instead we should use d := b.

Both occurrences of b + c must
be computed, since b is redefined
in-between.



Value numbering, 1

A classic technique

Works on three-address code within a basic block.

Each expression is assigned a value number (VN), so that
expressions that have the same VN must have the same value.
(Note: The VN is not the value of the expression.)

Data structures
A dictionary D1 that associates

a variable or a literal with a VN.
a triple (VN,operator,VN) with a VN.

Typically, D1 is implemented as a hash table.

A dictionary D2, mapping VNs to sets of variables
(implemented as an array).

Value numbering, 2

Algorithm

For each instruction x := y # z:

Look up VN ny for y in D1.
If not present, generate new unique VN ny and
put D1(y) = ny , D2(ny) = y.

Do the same for z.

Look up x in D1; if n found, remove x from D2(n).

Look up (ny ,#,nz ) in D1.
If VN m found,

insert D1(x) = m (m has been computed before).
if D2(m) is non-empty, replace instruction by
x := v for some v in that set.

Otherwise, generate new unique VN m and
put D1(nx , #, ny) = m, D1(x) = m.

Add x to D2(m).

Value numbering, 3

Extended basic blocks
A subtree of the CFG where each
node has only one predecessor.
Each path through the EBB is
handled by value numbering.

To avoid starting from scratch,
use stacks of dictionaries.
(Needs SSA form.)

B1

B4              B5

B2               B3

B6

Algebraic identities

Value numbering can be
combined with code improvement
using identities such as

x · 0 = 0

0 · x = 0

x · 1 = x

1 · x = x

. . . = . . .

Avoid long sequences of tests!

Available expressions: a dataflow analysis

Purpose

An auxiliary concept in an intraprocedural analysis for finding
common subexpressions.

Definition
An expression x # y is available at a point P in a CFG if the
expression is evaluated on every path from the entry node to P
and neither x nor y is redefined after the last such evaluation.

Locally defined sets

We consider sets of expressions.
gen(n) is the set of expressions x # y that are evaluated in n
without subsequent definition of x or y.
kill(n) is the set of expressions x # y where n defines x or y
without subsequent evaluation of x # y.



Available expressions: the flow equations

Sets to compute by flow analysis

avail-in(n) is the set of available exprs at the beginning of n.
avail-out(n) is the set of available exprs at the end of n.

avail-out(n) = gen(n) ∪ (avail-in(n)− kill(n))

avail-in(n0) = {} for the entry node n0

avail-in(n) = ∩p∈preds(n)avail-out(p) (other n)

Motivation
An expr is available on exit from n if it is either generated in n or
it was already available on entry and not killed in n.

An expr is available on entry if it is available from all preds.

Available expressions: Comments

Solution method

Iteration from the initial sets avail-in(n) = avail-out = U,
where U is the set of all expressions occurring in the CFG
(except for avail-in(n0) = {}).
Converges to the greatest fixpoint. All sets shrink
monotonically during iterations.

Fixpoint solution has the property that any expr declared
available is really available.
This does not hold for previous iterations.

Sets can be represented as bit-vectors (U = all ones).

This is a forward problem; information flows from
predecessors to successors.
Thus one should try to compute predecessors first.

Common subexpression elimination

Available expressions can be eliminated

If dataflow analysis finds that y # z in an instruction x := y # z

is available we could eliminate it.
This a second, separate step (code transformation): replace
instruction by x := w. But how to find w?

Basic idea
Generate a new name w. Follow the control backwards along all
paths until a definition v := y # z is found (such a def must exist
in all paths!). Replace the def by
w := y # z

v := w

A more powerful idea

Find these definitions by dataflow analysis: reaching definitions.

Tail recursion

A different optimization

A recursive function is tail-recursive if it returns a value computed
by (just) a recursive call. This can (and should) be optimized to a
loop.

Recursive form
int sumTo(int lim) {

return ack(1,lim,0);

}

int ack(int n,int k,int s){

if n>k then

return s;

else

return ack(n+1,k,s+n);

}

ack rewritten
int ack(int n,int k,int s){

L: if n>k then

return s;

else

k = k; // not needed

s = s+n;

n = n+1;

// note reordering!

goto L;

}



A motivating example

A simple Javalette function (in extension arrays1)

int sum (int [] a) {

int res=0;

for (int x : a)

res = res + x;

return res;

}

What code would you generate?

Possible naive LLVM code, part 1

%arr = type { i32, [ 0 x i32 ] }*

define i32 @sum(%arr %__p__a) {

entry: %a = alloca %arr

store %arr %__p__a , %arr* %a

%_res_t0 = alloca i32

store i32 0 , i32* %_res_t0

%_x_t1 = alloca i32

%t2 = load %arr* %a

%t3 = getelementptr %arr %t2 , i32 0, i32 0

%t4 = load i32* %t3

%_indexx_t5 = alloca i32

store i32 0 , i32* %_indexx_t5

br label %lab0

lab0: %t6 = load i32* %_indexx_t5

%t7 = icmp slt i32 %t6 , %t4

br i1 %t7 , label %lab1 , label %lab2

Possible naive LLVM code, part 2

lab1: %t8 = getelementptr %arr %t2 , i32 0, i32 1, i32 %t6

%t9 = load i32* %t8

store i32 %t9 , i32* %_x_t1

%t10 = load i32* %_res_t0

%t11 = load i32* %_x_t1

%t12 = add i32 %t10 , %t11

store i32 %t12 , i32* %_res_t0

%t13 = add i32 %t6 , 1

store i32 %t13 , i32* %_indexx_t5

br label %lab0

lab2: %t14 = load i32* %_res_t0

ret i32 %t14

}

After opt -mem2reg

define i32 @sum(%arr %__p__a) {

entry: %t3 = getelementptr %arr %__p__a, i32 0, i32 0

%t4 = load i32* %t3

br label %lab0

lab0: %_res_t0.0 = phi i32 [ 0, %entry ], [ %t12, %lab1 ]

%_indexx_t5.0 = phi i32 [ 0, %entry ], [ %t13, %lab1 ]

%t7 = icmp slt i32 %_indexx_t5.0, %t4

br i1 %t7, label %lab1, label %lab2

lab1: %t8 = getelementptr %arr %__p__a, i32 0, i32 1, i32 %_indexx_t5.0

%t9 = load i32* %t8

%t12 = add i32 %_res_t0.0, %t9

%t13 = add i32 %_indexx_t5.0, 1

br label %lab0

lab2: ret i32 %_res_t0.0

}



After opt -std-compile-opts

define i32 @sum(%arr nocapture %__p__a) nounwind readonly {

entry: %t3 = getelementptr %arr %__p__a, i32 0, i32 0

%t4 = load i32* %t3

%t71 = icmp sgt i32 %t4, 0

br i1 %t71, label %bb.nph, label %lab2

bb.nph: %tmp = zext i32 %t4 to i64

br label %lab1

lab1: %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %lab1 ]

%_res_t0.02 = phi i32 [ 0, %bb.nph ], [ %t12, %lab1 ]

%t8 = getelementptr %arr %__p__a, i64 0, i32 1, i64 %indvar

%t9 = load i32* %t8

%t12 = add i32 %t9, %_res_t0.02

%indvar.next = add i64 %indvar, 1

%exitcond = icmp eq i64 %indvar.next, %tmp

br i1 %exitcond, label %lab2, label %lab1

lab2: %_res_t0.0.lcssa = phi i32 [ 0, %entry ], [ %t12, %lab1 ]

ret i32 %_res_t0.0.lcssa

}

Generated x86 assembly (with llc)
_sum: push EDI

push ESI

mov ECX, DWORD PTR [ESP + 12]

mov EDX, DWORD PTR [ECX]

test EDX, EDX

jg LBB0_2

xor EAX, EAX

jmp LBB0_4

LBB0_2: xor ESI, ESI

add ECX, 4

xor EAX, EAX

LBB0_3: add EAX, DWORD PTR [ECX]

add EDX, -1

adc ESI, -1

add ECX, 4

mov EDI, EDX

or EDI, ESI

jne LBB0_3

LBB0_4: pop ESI

pop EDI

ret

Comments
No local vars; no stack
frame handling.

Uses callee save
registers EDI and ESI;
note save/restore.

ECX holds address of
current array elem;
increased by 4 in each
iteration.

EDX counts nr of
elems remaining.

Use of ESI in loop
termination test??

Optimizations of loops

In computationally demanding applications, most of the time is
spent in executing (inner) loops.

Thus, an optimizing compiler should focus its efforts in improving
loop code.

The first task is to identify loops in the code. In the source code,
loops are easily identified, but how to recognize them in a low level
IR code?

A loop in a CFG is a subset of the nodes that

has a header node, which dominates all nodes in the loop.

has a back edge from some node in the loop back to the
header.
A back edge is an edge where the head dominates the tail.

Moving loop-invariant code out of the loop

A simple example

for (i=0; i<n; i++)

a[i] = b[i] + 3*x;

should be replaced by

t = 3*x;

for (i=0; i<n; i++)

a[i] = b[i] + t;

We need to insert an extra
node (a pre-header) before the
header.

Not quite as simple

for (i=0; i<n; i++)

for (j=0; j<n; j++)

a[i][j] = b[i][j]+10*i+3*x;

should be replaced by

t = 3*x;

for (i=0; i<n; i++) {

u = 10*i + t;

for (j=0; j<n; j++)

a[i][j] = b[i][j] + u;

}



Induction variables

A basic induction variable is an (integer) variable which has a
single definition in the loop body, which increases its value with a
fixed (loop-invariant) amount.

Example: n = n + 3

A basic IV will assume values in arithmetic progression when the
loop executes.

Given a basic IV we can find a collection of derived IV’s, each of
which has a single def of the form
m = a*n+b;
where a and b are loop-invariant.
The def can be extended to allow RHS of the form a*k+b where
also k is an already established derived IV.

Strength reduction for IV’s

n is a basic IV (only def is to
increase by 1).
k is derived IV.

Replace multiplication involved in
def of k by addition.

while (n<100) {

k = 7*n + 3;

a[k]++;

n++;

}

Replace multiplication involved in
def of derived IV by addition.

k = 7*n + 3;

while (n<100) {

a[k]++;

n++;

k+=7;

}

Could there be some problem with this transformation?

Strength reduction for IV’s, continued

The loop might not execute at all,
in which case k would not be
evaluated.
Better to perform loop inversion
first.

if (n<100) {

k = 7*n + 3;

do {

a[k]++;

n++;

k+=7;

} while (n<100);

}

If n is not used after the loop, it
can be eliminated from the loop

if (n<100) {

k = 7*n + 3;

do {

a[k]++;

k+=7;

} while (k<703);

}

One more example

Sample loop
int sum = 0;

for(i=0; i<1000; i++)

sum += a[i];

Strength reduction/IV techniques

%sum = 0

%off = 0

%addr = %addr.a

%end = add %addr.a,4000

L1: %a.i = load %addr

%sum = add %sum,%a.i

%addr = add %addr, 4

%stop = cmp lt %addr,%end

br %stop, L1, L2

L2:

What can these techniques do for
this loop?

Naive assembler code
%sum = 0

%i = 0

L1: %off = mul %i, 4

%addr = add %addr.a,%off

%a.i = load %addr

%sum = add %sum,%a.i

%i = add %i, 1

%stop = cmp lt %i,1000

br %stop, L1, L2

L2:



Loop unrolling

for (i=0; i<100; i++) for (i=0; i<100; i=i+4) {

a[i] = a[i] + x[i] a[i] = a[i] + x[i]

a[i+1] = a[i+1] + x[i+1]

a[i+2] = a[i+2] + x[i+2]

a[i+3] = a[i+3] + x[i+3]

}

In which ways is this an improvement?

What to do if upper bound is n?

Is unrolling four steps the best choice?

What could be the disadvantages?

Optimizations in gcc

On ASTs
Inlining, constant folding, arithm. simplification.

On RTL code (≈ three-address code)

Tail (and sibling) call optimization.

Jump optimization.

SSA pass: constant propagation, dead code elimination.

Common subexpression elimination, more constant
propagation.

Loop optimization.

. . .

Difficult decisions: optimization order, repetitions.

Summing up

On optimization

We have only looked at a few of many, many techniques.

Modern optimization techniques use sophisticated algorithms and
clever data structures.

Frameworks such as LLVM make it possible to get the benefits of
state-of-the-art techniques in your own compiler project.


