

Programmability in the Era of Parallel
Computing

Per Stenström

Department of Computer Science and Engineering
Chalmers University of Technology

Sweden

 Multicore Scaling

By 2020, several hundreds of powerful cores/chip
1990 2000 2014

1 core

16 cores

100s cores

2020

 Source: Computer
Performance : Game Over or
Next Level” IEEE Computer, Jan
2011

 Predictions

Cores/chip

Programmability

High-Productivity Software Design in the
Multi/Many-core Era

Plug & play

 Productivity programming
languages (e.g. C/C++, Java)

4

End user

Productivity programmers

Efficiency programmers

System-near
programming

High-Productivity Software Stack for
Multi/Many-core Systems

Software Components Oblivious to
Parallelism

Runtime with
Parallelism
Capabilities

Hardware
Primitives
(e.g. TM)

5

Computer architects

Efficiency-only programmers

Productivity
programmers

Increased
level of
abstraction

Topic 1: Task based
programming models

Task-based Dataflow Prog. Models

TaskA

TaskC TaskB

#pragma css task output(a)
void TaskA(float a[M][M]);

#pragma css task input(a)
void TaskB(float a[M][M]);

#pragma css task input(a)
void TaskC(float a[M][M]);
 •  Programmer annotations for task dependences

•  Annotations used by run-time for scheduling
•  Dataflow task graph constructed dynamially

Hypothesis: Programmers focus on extracting
parallelism, system delivers performance. BUT: Is this

a good idea?

Topic 1:
Transactional memory

Transactional Memory (TM)
•  Transactional memory semantics:

–  Atomicity, consistency, and isolation
–  Tx_begin/Tx_end primitives

•  Allow for concurrency inside critical
sections

•  Software implementations too slow
•  Hardware implementations complex but

have been adopted (IBM Bluegene, Intel
Haswell)

•  100s of papers in the open literature;
design space fairly well understood

WA

RA

Commit

RA

Re-execution

TX1 TX2

Data
conflict

Hypothesis: Simplifies for programmers,
but is this a good idea?

