
Malicious Code 
Defences 

Slides a complement to DL: 
Attacking Malicious Code:  A report to the Infosec Research 

Council* 
  

Gary McGraw (Reliable Software Technologies)  
and Greg Morrisett (Cornell University)  

 



Malicious Code – Basics 

• Malicious code (malware) is any code added, 
changed or removed from a software system 
in order to intentionally cause harm or subvert 
the intended function of the system. 

• The problems with malware is steadily 
increasing due to a number of trends: 
– the increased networking 
– the rising system complexity 
– system configurations are constantly changing 



Malicious Code – Defence Principles 

There are four main approaches that the host can 
take to protect itself: 
1. Analyze the code and reject it - if it may cause 

harm.    (pre-check and stop) 
2. Rewrite the code before executing it - so that it 

can do no harm.  (pre-check and fix) 
3. Monitor the code execution and stop it - before 

it does harm.   (supervise and stop) 
4. Audit the code during execution - and recover if 

it did harm.   (check result and recover) 



Malicious Code – Defence Principles 
(cont’d) 

Some details and examples: 
1. Analyze the code and reject it - if it may cause 

harm    (pre-check and stop) 
– scanning for a known virus (and rejecting) 
– dataflow analysis (to detect novel malicious code) 
– analysis to find vulnerabilities (e.g. buffer limitations) 

• Rewrite the code before executing it - so that it 
can do no harm.  (pre-check and fix) 
– insert extra code to perform dynamic checks, e.g 

checking array indices (Java compiler) 



Malicious Code – Defence Principles 
(cont’d) 

3. Monitor the code execution and stop it - before it 
does harm.   (supervise and stop) 

– using reference monitors (RM) is the traditional 
approach 

– is often done in hardware and included in the OS 
– an on-line RM is JVM interpreter that monitors the 

execution of applets 
4. Audit the code during execution - and recover if it did 

harm.    (check result and recover) 
– recovery is only possible if the damage can be properly 

assessed. 
– requires use of secure auditing tools (logging). 



Malicious Code – Today’s Defences 

• Present defenses against malicious code are: 
– scanning for “malicious” signatures 

• used by anti-virus scanners 
• easy to implement 
• easy to circumvent by making small changes in signature 
• only works for previously known malware 

– code signing (cryptographic signing) 
• ensures transmission integrity, i.e. that nobody has changed the code 

during the transmission. 
• only means just that. Does no imply that the code is safe, robust or 

secure. You have to trust the sender. 

Traditionally, the security policy was enforced using the 
computer hardware and standard OS mechanisms.  

Such mechanisms are not easy to expand.  



Malicious Code – Tomorrow’s 
Defenses 

Promising new defenses against malicious code are: 
• software-based reference monitors 

– present methods to ensure memory safety, i.e. that all 
memory accesses are correct 

– basic idea is to rewrite binary code so that it checks 
and validates all memory accesses and all control 
transfers. 

– Available tools/methods are: 
• SFI = Software-Based Fault Isolation 
• IRM = In-line Reference Monitor 



Malicious Code – Tomorrow’s 
Defenses 

• type-safe languages 
– ensure that operations are only applied to the 

appropriate type, i.e. preventing unauthorized code 
from applying the wrong operations to the wrong 
values. 

– allows specification of new abstract types that could 
enforce application-specific access policies 

• proof-carrying code (PCC) 
– untrusted code is required to come with an explicit 

machine-checkable proof that the code is secure 
(wrt to a specific security policy.) 


	Malicious Code�Defences
	Malicious Code – Basics
	Malicious Code – Defence Principles
	Malicious Code – Defence Principles�(cont’d)
	Malicious Code – Defence Principles�(cont’d)
	Malicious Code – Today’s Defences
	Malicious Code – Tomorrow’s Defenses
	Malicious Code – Tomorrow’s Defenses

