Red-black trees (19.5), B-trees (19.8), 2-3-4 trees

Red-black trees

A red-black tree is a balanced BST
It has a more complicated invariant than an AVL tree:

- Each node is coloured red or black
- A red node cannot have a red child
- In any path from the root to a null, the number of black nodes is the same
- The root node is black

Implicitly, a null is coloured black

A red-black tree

Red-black trees - invariant

"A red node cannot have a red child"
"In each path from the root to a leaf, the number of black nodes is the same"
...then the longest path can only have 2k nodes

Maintaining the red-black invariant

In AVL trees, we maintained the invariant by rotating parts of the tree
In red-black trees, we use two operations:

- rotations
- recolouring: changing a red node to black or vice versa
Recolouring is an "administrative" operation that doesn't change the structure or contents of the tree

AVL versus red-black trees

To insert a value into an AVL tree:

- go down the tree to find the parent of the new node
- insert a new node as a child
- go up the three, rebalancing
...so two passes of the tree (down and up) required in the worst case
In a red-black tree:
- go down the tree to find the parent of the new node...
- ...but rebalance and recolour the tree as you go down
- after inserting, no need to go up the tree again

Red-black insertion

First, add the new node as in a BST, making it red

If the new node's parent is black, everything's fine

Red-black insertion

If the parent of the new node is red, we have broken the invariant. (How?) We need to repair it.
We need to consider several cases.
In all cases, since the parent node is red, the grandparent is black. (Why?)
Let's take the case where the parent's sibling is black.

Left-left tree ("outside grandchild")

X: Newly-inserted node, breaks invariant

P: Parent of

 new nodeG: Grandparent of new node

S: Sibling of parent

Left-left tree ("outside grandchild")

Left-left tree ("outside grandchild")

Left-right tree ("inside grandchild")

Left-right tree ("inside grandchild")

Summary so far

Insert the new node as in a BST, make it red
Problem: if the parent is red, the invariant is broken (red node with red child)
To fix a red node with a red child:

- If the node has a black sibling, rotate and recolour
- If the node has a red sibling, ...? Two approaches, bottom-up (simpler) and top-down (more efficient)

Bottom-up insertion

If a new node, its parent and its parent's sibling are all red: do a colour flip

- Make the parent and its sibling black, and the grandparent red

Bottom-up insertion

A colour flip almost restores the invariant...
...but if \mathbf{G} has a red parent, we will have a red node with a red child
So move up the tree to \mathbf{G} and apply the same double-red repair process there as we did to \mathbf{X}.

Bottom-up insertion

Insert the new node as in a BST, make it red If the new node has a red parent \mathbf{P} :

- If the parent's sibling \mathbf{S} is black, use rotations and recolourings to fix it - the rotations are the same as in an AVL tree
- If \mathbf{S} is red, do a colour flip, which makes the grandparent \mathbf{G} red - so you need to do the same double-red repair to \mathbf{G} if its parent is red
Lastly: if you get to the root and the root is red, make it black

Insättning, ett enkelt exempel

Invariants:

- A node is either red or black
1.The root is always black
2.A red node always has black children (a null reference is considered to refer to a black node)
3.The number of black nodes
in any path from the root to a leaf is the same

Insättning, ett enkelt exempel

Invariants:

- A node is either red or black
- The root is always black
- A red node always has black children (a null reference is considered to refer to a black node)
1.The number of black nodes in any path from the root to a leaf is the same

Insättning, ett enkelt exempel

Insättning, ett enkelt exempel

Insättning, ett enkelt exempel

- A node is either red or black - The root is always black
- A red node always has black children (a null reference is considered to refer to a black
1.The number of black nodes in any path from the root to a

Insättning, ett enkelt exempel

Invariants:

- A node is either red or black
- The root is always black
- A red node always has black children (a null reference is considered to refer to a black node)
1.The number of black nodes in any path from the root to a leaf is the same

Left-left tree: swap colours of 7 and 11

Insättning, ett enkelt exempel

Insättning, ett enkelt exempel

Invariants:

- A node is either red or black 1. The root is always black 2.A red node always has black children (a null reference is considered to refer to a black node)
3.The number of black nodes
in any path from the root to a leaf is the same

Top-down insertion

In bottom-up insertion, we sometimes need to move up the tree rebalancing and recolouring it after we insert an element But this only happens if \mathbf{P} and \mathbf{S} are both red
Idea: as we go down the tree looking for the insertion point, rebalance and recolour the tree so that either \mathbf{P} or \mathbf{S} is black - that way we never need to move up the tree again after insertion!

Top-down insertion

If on the way down we come across a node \mathbf{X} with two red children, colour-flip it immediately!

But what if \mathbf{X} 's parent is also red? We break the invariant!
Observation: X's parent's sibling must be black (or we would've colour-flipped them on the way down), so a single rotation + recolouring will fix the invariant!

Top-down insertion

Go down the tree, looking for the parent node
Whenever a node \mathbf{X} has two red children, colour-flip; if \mathbf{X} 's parent \mathbf{P} is red, use rotations and recolourings as before to fix it

- This is easy because \mathbf{P} 's sibling must be black

When you get to the right node \mathbf{P}, add a red child; if \mathbf{P} is also red, use rotations and recolourings to fix it

- Again, \mathbf{P} 's sibling is black so we avoid the difficult case

Insättning, ett enkelt exempel

Insättning, ett enkelt exempel

Insättning, ett enkelt exempel

Invariants:

- A node is either red or black
- The root is always black
- A red node always has black children (a null reference is considered to refer to a black node)
1.The number of black nodes in any path from the root to a leaf is the same

Left-left tree: swap colours of 7 and 11

Insättning, ett enkelt exempel

Insättning, ett enkelt exempel

Invariants:

- A node is either red or black 1.The root is always black 2.A red node always has black children (a null reference is considered to refer to a black node)
3.The number of black nodes in any path from the root to a leaf is the same

> The colour flip is finished.
> Now we continue down and insert 4!

Insättning, ett enkelt exempel

Invariants:

- A node is either red or black 1. The root is always black 2.A red node always has black children (a null reference is considered to refer to a black node)
3.The number of black nodes in any path from the root to a leaf is the same

No need to go up the tree afterwards

Red-black deletion

Use the normal BST deletion algorithm, which will end up removing a leaf from the tree
If the leaf is red, everything's fine If the leaf is black, the invariant is broken Idea: go down the tree, making sure that the current node is always red Lots of special cases! See book 19.5.4.

Red-black versus AVL trees

Red-black trees have a weaker invariant than AVL trees (less balanced) - but still $\mathrm{O}(\log \mathrm{n})$ running time
Advantage: less work to maintain the invariant (top-down insertion - no need to go up tree afterwards), so insertion and deletion are cheaper
Disadvantage: lookup will be slower if the tree is less balanced

- But in practice red-black trees are faster than AVL trees

2-3 trees

In a binary tree, each node has two children
In a 2-3 tree, each node has either 2 children (a 2-node) or 3 (a 3-node)
A 2-node is a normal BST node:

- One data value χ, which is greater than all values in the left subtree and less than all values in the right subtree
A 3-node is different:
- Two data values x and y
- All the values in the left subtree are less than x
- All the values in the middle subtree are between x and y
- All the values in the right subtree are greater than y

2-3 trees

2-node
3-node
An example of a 2-3 tree:

Why 2-3 trees?

To get a balanced BST we had to find funny invariants and define our operations in odd ways
With a 2-3 tree we have the invariant:

- The tree is always perfectly balanced and we can maintain it!

Insertion into a 2-3 tree

Suppose we want to insert 4 First, find the right leaf node

4 should go here

Insertion into a 2-3 tree

If it's a 2 -node, turn it into a 3-node by adding the value!

Insertion into a 2-3 tree

Now suppose we want to insert 3 . Find the right leaf node

3 should go here

Insertion into a 2-3 tree

We now have a 4-node - not allowed!
Split it into two 2-nodes and attach them to the parent:

But this is a 4-node!

Insertion into a 2-3 tree

4 goes here because it was the median
of $3,4,5$

Insertion into a 2-3 tree

Now suppose we want to add 19. Find the right leaf node and add it

19 should go here

Insertion into a 2-3 tree

Now suppose we want to add 19.
Again, we have a 4-node - split it

Insertion into a 2-3 tree

But now we have a 4-node one level above! Split that.

Insertion into a 2-3 tree

Finally we have a 2-3 tree again.

2-3 trees, summary

2-3 trees do not use rotation, unlike balanced BSTs
Instead, they keep the tree perfectly balanced and use splits when there is no room for a new node
Complexity is $\mathrm{O}(\log \mathrm{n})$, as tree is perfectly balanced
Much simpler than e.g. red-black trees!

B-trees

B-trees generalise 2-3 trees:

- In a B-tree of order k, a node can have k children
- Each non-root node must be at least half-full
- A 2-3 tree is a B-tree of order 3

Why B-trees

B-trees are used for disk storage in databases:

- Hard drives read data in blocks of typically $\sim 4 \mathrm{~KB}$
- For good performance, you want to minimise the number of blocks read
- This means you want: 1 tree node = 1 block
- B-trees with k about 1024 achieve this

2-3-4 trees

A 2-3-4 tree is a B-tree of order 4

2-node

Example:

Red-black trees are 2-3-4 trees!

Any red-black tree is equivalent to a 2-3-4 tree!

- A 2-node is a black node

Red-black trees are 2-3-4 trees!

Any red-black tree is equivalent to a 2-3-4 tree!

- A 3-node is a black node with one red child

Red-black trees are 2-3-4 trees!

Any red-black tree is equivalent to a 2-3-4 tree!

- A 4-node is a black node with two red children

Surprise!

Red-black trees vs 2-3-4 trees

Red-black trees 2-3-4 trees

Black node with no red 2-node children
Black node with one red child 3-node
Black node with two red 4-node children
Add a red child to a black Change a 2-node to a 3-node node
Add a red child to a red node Change a 3 -node to a 4 -node with a black sibling and rotate
Colour change + rotate Split a 4-node
Exercise: check for yourself how the red-black tree operations correspond to 2-3-4 tree operations!

Summary

Red-black trees - normally faster than AVL trees because there is no need to go up the tree after inserting or deleting

- On the other hand, trickier to implement

2-3 trees: allow 2 or 3 children per node

- Possible to keep perfectly balanced
- Slightly annoying to implement

B-trees: generalise 2-3 trees to k children

- If k is big, the height is very small - useful for on-disk trees e.g. databases
Red-black trees are 2-3-4 trees in disguise!

