
Complexity of
recursive functions

(Weiss 7.5)

Calculating complexity

Let T(n) be the time mergesort takes on a
list of size n

Mergesort does O(n) work to split the list in two,
two recursive calls of size n/2 and O(n) work to
merge the two halves together, so...

T(n) = O(n) + 2T(n/2)

Time to sort a
list of size n

Linear amount
of time spent in

splitting +
merging

Plus two
recursive calls

of size n/2

Calculating complexity

Procedure for calculating complexity of a
recursive algorithm:
● Write down a recurrence relation

e.g. T(n) = O(n) + 2T(n/2)
● Solve the recurrence relation to get a formula

for T(n) (difficult!)

There isn't a general way of solving any
recurrence relation – we'll just see a few
families of them

Approach 1:
draw a diagram

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

O(log n)
“levels”

O(n) time per level

Total time is
O(n log n)!

T(n)

2T(n/2)

4T(n/4)

8T(n/8)

Another example:
T(n) = O(1) + 2T(n-1)

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

T(n)

2T(n-1)

4T(n-2)

8T(n-3)

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

O(n)
“levels”

amount of work doubles at each level

Total time is
O(2n)!

T(n)

2T(n-1)

4T(n-2)

8T(n-3)

This approach

Good for building an intuition
Maybe a bit error-prone
Approach 2: expand out the definition
Example: solving T(n) = O(1) + T(n-1)

Expanding out recurrence relations

T(n) = 1 + T(n-1)
= 2 + T(n-2)
= 3 + T(n-3)
= …
= n + T(0)
= O(n)

T(0) is a constant,
so O(1)

Another example: T(n) = O(n) + T(n-1)

T(n) = n + T(n-1)
= n + (n-1) + T(n-2)
= n + (n-1) + (n-2) + T(n-3)
= …
= n + (n-1) + (n-2) + … + 1 + T(0)
= n(n+1) / 2 + T(0)
= O(n2)

Another example: T(n) = O(1) + T(n/2)

T(n) = 1 + T(n/2)
= 2 + T(n/4)
= 3 + T(n/8)
= …
= log n + T(1)
= O(log n)

Another example: T(n) = O(n) + T(n/2)

T(n) = n + T(n/2):
T(n) = n + T(n/2)
= n + n/2 + T(n/4)
= n + n/2 + n/4 + T(n/8)
= …
= n + n/2 + n/4 + …
< 2n
= O(n)

Functions that recurse once

T(n) = O(1) + T(n-1): T(n) = O(n)
T(n) = O(n) + T(n-1): T(n) = O(n2)
T(n) = O(1) + T(n/2): T(n) = O(log n)
T(n) = O(n) + T(n/2): T(n) = O(n)
An almost-rule-of-thumb:
● Solution is maximum recursion depth times

amount of work in one call

(except that this rule of thumb would
give O(n log n) for the last case)

Divide-and-conquer algorithms

T(n) = O(n) + 2T(n/2): T(n) = O(n log n)
● This is mergesort! There is a nice proof in the

book (theorem 7.4).

T(n) = 2T(n-1): T(n) = O(2n)
● Because 2n recursive calls of depth n

Other cases: master theorem (Wikipedia)
or theorem 7.5 from book
● Kind of fiddly – best to just look it up if you

need it

Complexity of recursive functions

Basic idea – recurrence relations
Easy enough to write down, hard to solve
● One technique: expand out the recurrence and see

what happens
● Another rule of thumb: multiply work done per level

with number of levels
● Drawing a diagram (like for quicksort) can help!

Master theorem for divide and conquer
Luckily, in practice you come across the same
few recurrence relations, so you just need to
know how to solve those

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

