
Complexity of
recursive functions

(Weiss 7.5)



  

Calculating complexity

Let T(n) be the time mergesort takes on a 
list of size n

Mergesort does O(n) work to split the list in two, 
two recursive calls of size n/2 and O(n) work to 
merge the two halves together, so...

T(n) = O(n) + 2T(n/2)

Time to sort a
list of size n

Linear amount
of time spent in

splitting +
merging

Plus two
recursive calls

of size n/2



  

Calculating complexity

Procedure for calculating complexity of a 
recursive algorithm:
● Write down a recurrence relation

e.g. T(n) = O(n) + 2T(n/2)
● Solve the recurrence relation to get a formula 

for T(n) (difficult!)

There isn't a general way of solving any 
recurrence relation – we'll just see a few 
families of them



  

Approach 1:
draw a diagram
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n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

O(log n)
“levels”

O(n) time per level

Total time is
O(n log n)!

T(n)

2T(n/2)

4T(n/4)

8T(n/8)



  

Another example:
T(n) = O(1) + 2T(n-1)
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1 1

1 1 1 1
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O(n)
“levels”

amount of work doubles at each level

T(n)

2T(n-1)

4T(n-2)

8T(n-3)
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O(n)
“levels”

amount of work doubles at each level

Total time is
O(2n)!

T(n)

2T(n-1)

4T(n-2)

8T(n-3)



  

This approach

Good for building an intuition
Maybe a bit error-prone
Approach 2: expand out the definition
Example: solving T(n) = O(1) + T(n-1)



  

Expanding out recurrence relations

T(n) = 1 + T(n-1)
= 2 + T(n-2)
= 3 + T(n-3)
= …
= n + T(0)
= O(n)

T(0) is a constant,
so O(1)



  

Another example: T(n) = O(n) + T(n-1)

T(n) = n + T(n-1)
= n + (n-1) + T(n-2)
= n + (n-1) + (n-2) + T(n-3)
= …
= n + (n-1) + (n-2) + … + 1 + T(0)
= n(n+1) / 2 + T(0)
= O(n2)



  

Another example: T(n) = O(1) + T(n/2)

T(n) = 1 + T(n/2)
= 2 + T(n/4)
= 3 + T(n/8)
= …
= log n + T(1)
= O(log n)



  

Another example: T(n) = O(n) + T(n/2)

T(n) = n + T(n/2):
T(n) = n + T(n/2)
= n + n/2 + T(n/4)
= n + n/2 + n/4 + T(n/8)
= …
= n + n/2 + n/4 + …
< 2n
= O(n)



  

Functions that recurse once

T(n) = O(1) + T(n-1): T(n) = O(n)
T(n) = O(n) + T(n-1): T(n) = O(n2)
T(n) = O(1) + T(n/2): T(n) = O(log n)
T(n) = O(n) + T(n/2): T(n) = O(n)
An almost-rule-of-thumb:
● Solution is maximum recursion depth times 

amount of work in one call

(except that this rule of thumb would 
give O(n log n) for the last case)



  

Divide-and-conquer algorithms

T(n) = O(n) + 2T(n/2): T(n) = O(n log n)
● This is mergesort! There is a nice proof in the 

book (theorem 7.4).

T(n) = 2T(n-1): T(n) = O(2n)
● Because 2n recursive calls of depth n

Other cases: master theorem (Wikipedia) 
or theorem 7.5 from book
● Kind of fiddly – best to just look it up if you 

need it



  

Complexity of recursive functions

Basic idea – recurrence relations
Easy enough to write down, hard to solve
● One technique: expand out the recurrence and see 

what happens
● Another rule of thumb: multiply work done per level 

with number of levels
● Drawing a diagram (like for quicksort) can help!

Master theorem for divide and conquer
Luckily, in practice you come across the same 
few recurrence relations, so you just need to 
know how to solve those
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