## Better sorting algorithms (Weiss chapter 8.5 - 8.6)

## Divide and conquer

Very general name for a type of recursive algorithm
You have a problem to solve.

- Split that problem into smaller subproblems
- Recursively solve those subproblems
- Combine the solutions for the subproblems to solve the whole problem


## To solve this...

## 1. Split the problem into subproblems

2. Recursively solve the subproblems
3. Combine the solutions


## Quicksort

Pick an element from the array, called the pivot
Partition the array:

- First come all the elements smaller than the pivot, then the pivot, then all the elements greater than the pivot
Recursively quicksort the two partitions


## Quicksort

## $\begin{array}{llllllllll}5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4\end{array}$

Say the pivot is 5 .
Partition the array into: all elements less than 5 , then 5 , then all elements greater than 5


## Quicksort

Now recursively quicksort the two partitions!

$$
\begin{array}{llllllllll}
3 & 3 & 2 & 2 & 1 & 4 & 5 & 9 & 8 & 7
\end{array}
$$

Quicksort
Quicksort
$\begin{array}{llllllllll}1 & 2 & 2 & 3 & 3 & 4 & 5 & 7 & 8 & 9\end{array}$

## Pseudocode

// call as sort(a, 0, a.length-1); void sort(int[] a, int low, int high) \{ if (low >= high) return; int pivot = partition(a, low, high); // assume that partition returns the // index where the pivot now is sort(a, low, pivot-1); sort(a, pivot+1, high);
\}
Common optimisation: switch to insertion sort when the input array is small

## Complexity of quicksort

In the best case, partitioning splits an array of size $n$ into two halves of size $n / 2$ :


## Complexity of quicksort

The recursive calls will split these arrays into four arrays of size $n / 4$ :

## n


n/2


## n

n/2

Total time is
$\mathbf{O}(\mathbf{n} \log \mathbf{n})!$
n/4
$\log n$ "levels"
$\mathbf{O}(\mathbf{n})$ time per level

## Complexity of quicksort

## But that's the best case!

In the worst case, everything is greater than the pivot (say)

- The recursive call has size n-1
- Which in turn recurses with size $n-2$, etc.
- Amount of time spent in partitioning:

$$
n+(n-1)+(n-2)+\ldots+1=\mathbf{O}\left(\mathbf{n}^{2}\right)
$$

## n

## Total time is $\mathbf{O}\left(\mathbf{n}^{2}\right)!$

## n <br> "levels"

n-3

## $\mathbf{O}(\mathbf{n})$ time per level

## Worst cases

When we pick the first element as the pivot, we get this worst case for:

- Sorted arrays
- Reverse-sorted arrays


## Complexity of quicksort

Quicksort works well when the pivot splits the array into roughly equal parts

- Median-of-three: pick first, middle and last element of the array and pick the median of those three
- Pick pivot at random: gives $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ expected (probabilistic) complexity
Introsort: detect when we get into the $\mathrm{O}\left(\mathrm{n}^{2}\right)$ case and switch to a different algorithm (e.g. heapsort)


## Partitioning algorithm

1. Pick a pivot (here 5)

## $\begin{array}{llllllllll}5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4\end{array}$

## Partitioning algorithm

2. Set two indexes, low and high

$$
\begin{array}{llllllllll}
5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4
\end{array}
$$

low
high
Idea: everything to the left of low is less than the pivot (coloured yellow), everything to the right of high is greater than the pivot (green)

## Partitioning algorithm

3. Move low right until you find something greater than the pivot

$$
\begin{array}{llllllllll}
5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4
\end{array}
$$

low
high

## Partitioning algorithm

3. Move low right until you find something greater or equal to the pivot

$$
\begin{array}{llllllllll}
5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4
\end{array}
$$

low
while (a[low] < pivot) low++;

## Partitioning algorithm

3. Move low right until you find something greater than the pivot

$$
\begin{array}{llllllllll}
5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4
\end{array}
$$

low
while (a[low] < pivot) low++;

## Partitioning algorithm

3. Move high left until you find something less than the pivot

$$
\begin{array}{llllllllll}
5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4
\end{array}
$$

low
high
while (a[high] < pivot) high--;

## Partitioning algorithm

## 4. Swap them!

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 8 & 7 & 3 & 2 & 1 & 9
\end{array}
$$

$$
\begin{gathered}
\text { low } \\
\operatorname{swap}(a[l o w], \\
a[h i g h]) ;
\end{gathered}
$$

high

## Partitioning algorithm

5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 8 & 7 & 3 & 2 & 1 & 9
\end{array}
$$

> low++; high--;
high

## Partitioning algorithm

5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 8 & 7 & 3 & 2 & 1 & 9
\end{array}
$$



## Partitioning algorithm

## 5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 8 & 7 & 3 & 2 & 1 & 9
\end{array}
$$

low
high

## Partitioning algorithm

5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 8 & 7 & 3 & 2 & 1 & 9
\end{array}
$$



## Partitioning algorithm

5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 1 & 7 & 3 & 2 & 8 & 9
\end{array}
$$

$$
\operatorname{swap}(a[l o w], \quad \text { low } \quad a[h i g h]) ;
$$

## Partitioning algorithm

5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 1 & 7 & 3 & 2 & 8 & 9
\end{array}
$$

> low++; high--; low high

## Partitioning algorithm

## 5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 1 & 7 & 3 & 2 & 8 & 9
\end{array}
$$

low
high

## Partitioning algorithm

## 5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 1 & 7 & 3 & 2 & 8 & 9
\end{array}
$$

low
high

## Partitioning algorithm

## 5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 1 & 2 & 3 & 7 & 8 & 9
\end{array}
$$

low
high

## Partitioning algorithm

## 5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 1 & 2 & 3 & 7 & 8 & 9
\end{array}
$$

> low
high

## Partitioning algorithm

## 5. Advance low and high and repeat

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 1 & 2 & 3 & 7 & 8 & 9
\end{array}
$$

low
high

## Partitioning algorithm

6. When low and high have crossed, we are finished!

$$
\begin{array}{llllllllll}
5 & 3 & 4 & 2 & 1 & 2 & 3 & 7 & 8 & 9
\end{array}
$$

## But the pivot is in the wrong place. <br> low

high

## Partitioning algorithm

7. Last step: swap pivot with high

$$
\begin{array}{llllllllll}
3 & 3 & 4 & 2 & 1 & 2 & 5 & 7 & 8 & 9
\end{array}
$$

low

high

## Details

1. What to do if the pivot is not the first element?

- Swap the pivot with the first element before starting partitioning!


## Details

2. What happens if the array contains many duplicates?

- Notice that we only advance a[low] as long as a[low] < pivot
- If $a[$ low] == pivot we stop, same for a[high]
- If the array contains just one element over and over again, low and high will advance at the same rate
- Hence we get equal-sized partitions


## Pivot

Which pivot should we pick?

- First element: gives $O\left(n^{2}\right)$ behaviour for alreadysorted lists
- Median-of-three: pick first, middle and last element of the array and pick the median of those three
- Pick pivot at random: gives $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ expected (probabilistic) complexity


## Quicksort

Typically the fastest sorting algorithm... ...but very sensitive to details!

- Must choose a good pivot to avoid $\mathrm{O}\left(\mathrm{n}^{2}\right)$ case
- Must take care with duplicates
- Switch to insertion sort for small arrays to get better constant factors


## Mergesort

We can merge two sorted lists into one in linear time:

$$
\begin{array}{llllllllll}
2 & 3 & 5 & 8 & 9 & 1 & 2 & 3 & 4 & 7
\end{array}
$$

12
2

## Mergesort

Another divide-and-conquer algorithm To mergesort a list:

- Split the list into two equal parts
- Recursively mergesort the two parts
- Merge the two sorted lists together


## Mergesort

## 1. Split the list into two equal parts

$$
\begin{array}{llllllllll}
5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4
\end{array}
$$

$$
\begin{array}{llllllllll}
5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4
\end{array}
$$

## Mergesort

2. Recursively mergesort the two parts

$$
\begin{array}{lllllllllll}
5 & 3 & 9 & 2 & 8 & 7 & 3 & 2 & 1 & 4
\end{array}
$$

## 23 <br> 8 <br> 9

123
4
7

## Mergesort

3. Merge the two sorted lists together


## Complexity analysis

Mergesort's divide-and-conquer approach is similar to quicksort
But it always splits the list into equallysized pieces!
Hence $O(n \log n)$, just like the best case for quicksort - but this is the worst case for mergesort

## n

n/2

Total time is
$\mathbf{O}(\mathbf{n} \log \mathbf{n})!$
n/4
$\log n$ "levels"
$\mathbf{O ( n )}$ time per level

## Mergesort vs quicksort

## Mergesort:

- Not in-place
- O(n log n)
- Only requires sequential access to the list - this makes it good in functional programming
Quicksort:
- In-place
- O(n log n) but $O\left(n^{2}\right)$ if you are not careful
- Works on arrays only (random access)

Both the best in their fields!

- Quicksort best imperative algorithm
- Mergesort best functional algorithm

