Complexity (Weiss chapter 5)

Complexity

This lecture is all about how to describe the performance of an algorithm
Last time we had three versions of the file-reading program. For a file of size n :

- The first one needed to copy $\mathrm{n}^{2} / 2$ characters
- The second one needed to copy $n^{2} / 200$ characters
- The third needed to copy 2 n characters

We worked out these formulas, but it was a bit of work - now we'll see an easier way

Why do we ignore constant factors?

Well, when n is 1000000 ...

- $\log _{2} \mathrm{n}$ is 20
- n is 1000000
- n^{2} is 1000000000000
- 2^{n} is a number with 300,000 digits...

Given two algorithms:

- The first takes $1000000 \log _{2} \mathrm{n}$ steps to run
- The second takes 0.00000001×2^{n}

The first is miles better!
Constant factors normally don't matter

Big O notation

Instead of saying...

- The first implementation copies $\mathrm{n}^{2} / 2$ characters
- The second copies $n^{2} / 200$ characters
- The third copies $2 n$ characters

We will just say...

- The first implementation copies $\mathbf{O}\left(\mathbf{n}^{2}\right)$ characters
- The second copies $\mathbf{O}\left(\mathbf{n}^{2}\right)$ characters
- The third copies $\mathbf{O}(\mathbf{n})$ characters

O(n ${ }^{2}$) means "proportional to $n^{2 "}$
(almost)

Time complexity

Suppose an algorithm takes $\mathrm{n}^{2} / 2$ steps, and each step takes 100 ns to run

- The total time taken is $50 \mathrm{n}^{2} \mathrm{~ns}$
- This is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- The number of steps taken is also $O\left(n^{2}\right)$

It doesn't matter whether we count steps or time!
We say that the algorithm has $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time complexity or simply complexity

Why ignore constant factors?

Big O really simplifies things:

- A small phrase like $O\left(n^{2}\right)$ tells you a lot
- It's easier to calculate than a precise formula
- We get the same answer whether we count number of statements executed or time taken (or in this case number of elements copied) - so we can be a bit careless what we count
On the other hand:
- Sometimes we do care about constant factors!

Big O is normally a good compromise

What happens without big O?

How many steps does this function take on an array of length n (in the worst case)?
Object search(Object[] a, Object x) \{ for (int i = 0; i < a.length; i++) \{ if (a[i].equals(target)) return a[i];

[^0]
Assume that loop body takes 1 step

 \}
What happens without big O?

How many steps does this function take on an array of length n (in the y orst case)?
Object search (Objec + [] ; jer f) \{ for (int i = 0; i < ; \{ if (a[i].equa. Answer: return a[.
\}
return null;

What about this one?

boolean unique(Object[] a) \{ for(int i = 0; i < a.length; i++) for (int j = 0; j < a.length; j++) if (a[i].equals(a[j]) \&\& i != j) return false;
return true;
\}

What about this one?

boolean unique (Object Γ a)
for(int i = 0
$<$
++)
for (int i-
.+)
if (a[. $\begin{gathered}\text { Outer loop runs } n \text { times } \\ \text { Each time, inner loop }\end{gathered} \quad!=j$) rot+ runs n times
return true Total: $n \times n=n^{2}$
\}

What about this one?

boolean unique(Object[] a) \{ for (int i = 0; i < a.length; i++)
for (int j = 0; j < i ; j++) if (a[i].equals(a[j]), return false;
return true;
Loop runs to i instead of n

Some hard sums

When $i=0$, inner loop runs 0 times
When $i=1$, inner loop runs 1 time

When $i=n-1$, inner loop runs $n-1$ times

Total:

- $\sum_{i=0}^{n-1} i=0+1+2+\ldots+n-1$
which is $n(n-1) / 2$

What about this one?

boolean unique(Object[] a) \{ for(int i = 0; i < a.lengt'i; i++) for (int j = 0; i< if (a[i].enual return fao Answer: $n(n-1) / 2$ return true; \}

What about this one?

boolean unique(Object[] a) \{ for (int i = 0; i < a.length; i++) for (int j = 0; j < i; j++) for (int k = 0; k < j; k++) "something that takes 1 step"
\}

More hard sums

$$
\sum_{i=0}^{n-1} \sum_{j=0}^{i-1} \sum_{k=0}^{i-1} 1
$$

Inner loop:
k goes from 0 to $j-1$

Outer loop:
i goes from 0 to $n-1$
Middle loop:
j goes from 0 to i-1

Counts: how many values i, j, k where $0 \leq i<n, 0 \leq j<i, 0 \leq k \leq j$

More hard sums

$$
\sum_{k=0}^{1-1} \sum_{i=1}^{n} \sum_{i=1} 1
$$

I have no idea
how to solve this! Wolfram Alpha says it's

$$
n(n-1)(n-2) / 6
$$

Counts: how many values i, j, k where $0 \leq i<n, 0 \leq j<i, 0 \leq k \leq j$

What about this one?

boolean unique(Object[] a) \{ for (int $i=0 ; i<a . l e n g \dagger^{\prime} \mid ; i++$) for (int $j=0 ; i<$ for (int $k=6$ Answer: "something $n(n-1)(n-2) / 6, \quad$ step"
\} apparently

This is just horrible! Isn't there a better way?

Using big O complexity

boolean unique(Object[] a) \{

> for(int i = 0; i < a.length; i++)
for (int j = 0; i < i ; j++)
for (int k = 0; \quad j; k++)
"something th~" - ${ }^{-1}-\ldots$ ".
\}
Three nested loops, all running from 0 to n ... Answer: $\mathbf{O}\left(\mathbf{n}^{3}\right)$!

Why ignore constant factors? (again)

Big O really simplifies things:

- A small phrase like $O\left(n^{2}\right)$ tells you a lot
- It's easier to calculate than a precise formula
- We get the same answer whether we count number of statements executed or time taken (or in this case number of elements copied) - so we can be a bit careless what we count
On the other hand:
- Sometimes we do care about constant factors!

Big O is normally a good compromise

Our long calculation only told us how many steps the algorithm takes, not how much time! mplifies things:

- A sma ase like $O\left(n^{2}\right)$ tells you a/ t
- It's eas r to calculate than a nrarico fnrmula
- We get the same answer But normally not number of statements exec this case number of eleme be a bit careless what we
On the other hand:
- Sometimes we do care about constant factors!

Big O is normally a good compromise

The rest of the lecture

How to calculate big-O complexity:

- We will first have to define formally what it means for an algorithm to have a certain complexity
- We will then come up with some rules for calculating complexity
- To come up with those rules, we will have to do "hard sums", but once we have the rules we can forget the sums
- (very occasionally, you might still have to do the sums yourself)

Big O, formally

Big O measures the growth of a mathematical function

- Typically a function $\mathrm{T}(n)$ giving the number of steps taken by an algorithm on input of size n
- But can also be used to measure space complexity (memory usage) or anything else
Formally, we say " $\mathrm{T}(n)$ is $\mathrm{O}(\mathrm{f}(n)$)"
- E.g., "T(n) is $O\left(n^{2}\right) "$

This means:

- $\mathrm{T}(n) \leq a \times \mathrm{f}(n)$, for some constant a (i.e., $\mathrm{T}(n)$ is proportional to $f(n)$ or smaller)
- But this need only hold for all n above some threshold n_{0}

An example: $n^{2}+2 n+3$ is $O\left(n^{2}\right)$

Exercises

- Is $n^{2}+2 n+3$ in $O\left(n^{3}\right)$?
- Is $3 n+5$ in $O(n)$?
- Why do we need the "threshold" n_{0} ?
Big-O$\mathrm{O}(1)$Constant
$\mathrm{O}(\log n)$ Logarithmic
$\mathrm{O}(n)$ Linear
$\mathrm{O}(n \log n)$ Log-linear
$\mathrm{O}\left(n^{2}\right)$Quadratic$\mathrm{O}\left(n^{3}\right)$Cubic$\mathrm{O}\left(2^{n}\right)$Exponential
$\mathrm{O}(n!)$Factorial

Growth rates

Imagine that we double the input size from n to $2 n$.
If an algorithm is...

- $O(1)$, then it takes the same time as before
- O(log $n)$, then it takes a constant amount more
- $\mathrm{O}(\mathrm{n})$, then it takes twice as long
- $O(n \log n)$, then it takes twice as long plus a little bit more
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$, then it takes four times as long If an algorithm is $\mathrm{O}\left(2^{\mathrm{n}}\right)$, then adding one element makes it take twice as long

Adding big O (a hierarchy)

$\mathrm{O}(1)<\mathrm{O}(\log \mathrm{n})<\mathrm{O}(\mathrm{n})<\mathrm{O}(\mathrm{n} \log \mathrm{n})<$
$\mathrm{O}\left(\mathrm{n}^{2}\right)<\mathrm{O}\left(\mathrm{n}^{3}\right)<\mathrm{O}\left(2^{\mathrm{n}}\right)$
When adding a term lower in the hierarchy to one higher in the hierarchy, the lower-complexity term disappears:

$$
\begin{aligned}
& O(1)+O(\log n)=O(\log n) \\
& O(\log n)+O\left(n^{k}\right)=O\left(n^{k}\right)(i f k \geq 0) \\
& O\left(n^{i}\right)+O\left(n^{k}\right)=O\left(n^{k}\right) \text { if } j \leq k \\
& O\left(n^{k}\right)+O\left(2^{n}\right)=O\left(2^{n}\right)
\end{aligned}
$$

An example: $n^{2}+2 n+3$ is $O\left(n^{2}\right)$

Quiz

What are these in Big O notation?

- $\mathrm{n}^{2}+11$
- $2 n^{3}+3 n-1$
- $\mathrm{n}^{4}+2^{\mathrm{n}}$

Just use hierarchy!

$$
\begin{aligned}
& n^{2}+11=O\left(n^{2}\right)+O(1)=O\left(n^{2}\right) \\
& 2 n^{3}+3 n-1=O\left(n^{3}\right)+O(n)+O(1)= \\
& O\left(n^{3}\right)
\end{aligned}
$$

$$
\mathrm{n}^{4}+2^{\mathrm{n}}=\mathrm{O}\left(\mathrm{n}^{4}\right)+\mathrm{O}\left(2^{\mathrm{n}}\right)=\mathrm{O}\left(2^{\mathrm{n}}\right)
$$

[^0]: \}
 return null;

