
  

Complexity
(Weiss chapter 5)



  

Complexity

This lecture is all about how to describe the 
performance of an algorithm
Last time we had three versions of the 
file-reading program. For a file of size n:
● The first one needed to copy n2/2 characters
● The second one needed to copy n2/200 characters
● The third needed to copy 2n characters

We worked out these formulas, but it was 
a bit of work – now we'll see an easier way



  

Big idea:
ignore constant factors!



  

Why do we ignore constant factors?

Well, when n is 1000000...
● log2 n is 20
● n is 1000000
● n2 is 1000000000000
● 2n is a number with 300,000 digits...

Given two algorithms:
● The first takes 1000000 log2 n steps to run
● The second takes 0.00000001 × 2n

The first is miles better!
Constant factors normally don't matter



  

Big O notation

Instead of saying...
● The first implementation copies n2/2 characters
● The second copies n2/200 characters
● The third copies 2n characters

We will just say...
● The first implementation copies O(n2) characters
● The second copies O(n2) characters
● The third copies O(n) characters

O(n2) means “proportional to n2”
(almost)



  

Time complexity

Suppose an algorithm takes n2/2 steps, 
and each step takes 100ns to run
● The total time taken is 50n2 ns
● This is O(n2)
● The number of steps taken is also O(n2)

It doesn't matter whether we count steps 
or time!
We say that the algorithm has O(n2) time 
complexity or simply complexity



  

Why ignore constant factors?

Big O really simplifies things:
● A small phrase like O(n2) tells you a lot
● It's easier to calculate than a precise formula
● We get the same answer whether we count 

number of statements executed or time taken (or in 
this case number of elements copied) – so we can 
be a bit careless what we count

On the other hand:
● Sometimes we do care about constant factors!

Big O is normally a good compromise



  

What happens without big O?

How many steps does this function take 
on an array of length n (in the worst case)?
Object search(Object[] a, Object x) {

  for(int i = 0; i < a.length; i++) {

    if (a[i].equals(target))

      return a[i];

  }

  return null;

}

Assume that
loop body takes

1 step



  

What happens without big O?

How many steps does this function take 
on an array of length n (in the worst case)?
Object search(Object[] a, Object x) {

  for(int i = 0; i < a.length; i++) {

    if (a[i].equals(target))

      return a[i];

  }

  return null;

}

Answer:
n



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < a.length; j++)

      if (a[i].equals(a[j]) && i != j)

        return false;

  return true;

}

Outer loop runs n times
Each time, inner loop

runs n times

Total: n × n = n2



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}

Loop runs to i
instead of n



  

Some hard sums

When i = 0, inner loop runs 0 times
When i = 1, inner loop runs 1 time
…
When i = n-1, inner loop runs n-1 times

Total:

●          = 0 + 1 + 2 + … + n-1

which is n(n-1)/2

∑
i=0

n−1

i



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      if (a[i].equals(a[j]))

        return false;

  return true;

}

Answer:
n(n-1)/2



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      for (int k = 0; k < j; k++)

        “something that takes 1 step”

}



  

More hard sums

Outer loop:
i goes from 0 to n-1

Middle loop:
j goes from 0 to i-1

Inner loop:
k goes from 0 to j-1

Counts: how many values i, j, k where
0 ≤ i < n, 0 ≤ j < i, 0 ≤ k ≤ j

∑
i=0

n−1

∑
j=0

i−1

∑
k=0

i−1

1



  

More hard sums

Counts: how many values i, j, k where
0 ≤ i < n, 0 ≤ j < i, 0 ≤ k ≤ j

∑
i=0

n−1

∑
j=0

i−1

∑
k=0

i−1

1

I have no idea
how to solve this!

Wolfram Alpha says it's
n(n-1)(n-2)/6



  

What about this one?

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      for (int k = 0; k < j; k++)

        “something that takes 1 step”

}

Answer:
n(n-1)(n-2)/6,

apparently



  

This is just horrible!
Isn't there a better way?



  

Using big O complexity

boolean unique(Object[] a) {

  for(int i = 0; i < a.length; i++)

    for (int j = 0; j < i; j++)

      for (int k = 0; k < j; k++)

        “something that takes 1 step”

}
Three nested loops,

all running from 0 to n...
Answer: O(n3)!



  

Why ignore constant factors?
(again)

Big O really simplifies things:
● A small phrase like O(n2) tells you a lot
● It's easier to calculate than a precise formula
● We get the same answer whether we count 

number of statements executed or time taken (or in 
this case number of elements copied) – so we can 
be a bit careless what we count

On the other hand:
● Sometimes we do care about constant factors!

Big O is normally a good compromise



  

Why ignore constant factors?
(again)

Big O really simplifies things:
● A small phrase like O(n2) tells you a lot
● It's easier to calculate than a precise formula
● We get the same answer whether we count 

number of statements executed or time taken (or in 
this case number of elements copied) – so we can 
be a bit careless what we count

On the other hand:
● Sometimes we do care about constant factors!

Big O is normally a good compromise

Isn't it!

Our long calculation
only told us how
many steps the

algorithm takes,
not how much time!

But normally not
enough to go to all

this trouble!



  

The rest of the lecture

How to calculate big-O complexity:
● We will first have to define formally what it 

means for an algorithm to have a certain 
complexity

● We will then come up with some rules for 
calculating complexity

● To come up with those rules, we will have to do 
“hard sums”, but once we have the rules we can 
forget the sums

● (very occasionally, you might still have to do the 
sums yourself)



  

Big O, formally

Big O measures the growth of a mathematical 
function
● Typically a function T(n) giving the number of steps taken 

by an algorithm on input of size n
● But can also be used to measure space complexity (memory 

usage) or anything else

Formally, we say “T(n) is O(f(n))”
● E.g., “T(n) is O(n2)”

This means:
● T(n) ≤ a × f(n), for some constant a (i.e., T(n) is 

proportional to f(n) or smaller)
● But this need only hold for all n above some threshold n0



  

An example: n2 + 2n + 3 is O(n2)

n2+2n+3 ≤ 2n2

for n ≥ 3

n
0
 = 3

c = 2



  

Exercises

● Is n2 + 2n + 3 in O(n3)?
● Is 3n + 5 in O(n)?
● Why do we need the “threshold” n0?



  



  

Growth rates
Imagine that we double the input size 
from n to 2n.
If an algorithm is...
● O(1), then it takes the same time as before
● O(log n), then it takes a constant amount more
● O(n), then it takes twice as long
● O(n log n), then it takes twice as long plus a little 

bit more
● O(n2), then it takes four times as long

If an algorithm is O(2n), then adding one 
element makes it take twice as long



  



  

Adding big O (a hierarchy)

O(1) < O(log n) < O(n) < O(n log n) < 
O(n2) < O(n3) < O(2n)
When adding a term lower in the 
hierarchy to one higher in the hierarchy, 
the lower-complexity term disappears:

O(1) + O(log n) = O(log n)
O(log n) + O(nk) = O(nk) (if k ≥ 0)
O(nj) + O(nk) = O(nk), if j ≤ k
O(nk) + O(2n) = O(2n)



  

An example: n2 + 2n + 3 is O(n2)

Use hierarchy:
n2 + 2n + 3

=
O(n2) + O(n) + O(1)

=
O(n2)



  

Quiz

What are these in Big O notation?
● n2 + 11
● 2n3 + 3n – 1
● n4 + 2n



  

Just use hierarchy!

n2 + 11 = O(n2) + O(1) = O(n2)
2n3 + 3n – 1 = O(n3) + O(n) + O(1) = 
O(n3)
n4 + 2n = O(n4) + O(2n) = O(2n)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

