
Summing up

Basic data structures

Arrays: good for random access
● dynamic arrays: resizeable

Linked lists: good for sequential access
● many variants – doubly linked, etc.

Trees: good for hierarchical data
● special case: binary trees

Graphs: good for cyclic data
● many variants: weighted, directed, etc.

Some data structures are special

In machine language, the memory is an array of
integers
● To the processor, everything is an array

In imperative languages, the memory is an object
graph with references being edges
● To an imperative language, everything is a graph (or an array)

In functional languages, any algebraic data type is a
kind of tree (cf. Lisp S-expressions)
● To a functional language, everything is a tree (or a function)

Everything else is built from whatever primitive
data structures your programming language
supports

Basic ADTs

Maps: maintain a key/value relationship
● An array is a sort of map where the keys are array indices

Sets: like a map but with only keys, no values

Queue: add to one end, remove from the other
Stack: add and remove from the same end
Deque: add and remove from either end

Priority queue: add, remove minimum

Implementing maps and sets

A binary search tree
● Good performance if you can keep it balanced
● Has good random and sequential access: the best

of both worlds

A hash table
● Very fast if you choose a good hash function

A linked list??
● ...pretty bad
● but used in the “chains” in a hash table

Implementing queues, stacks,
priority queues

Queues:
● a linked list
● a circular array
● a pair of lists (in a functional language)

Stacks:
● a linked list
● a dynamic array

Priority queues:
● a binary heap
● a leftist heap

What we have studied

The data structures and ADTs above
+ algorithms that work on these data
 structures (sorting, Dijkstra's, etc.)
+ complexity

Data structure design

How to design your own data structures?
● This takes practice!

Study other people's ideas:
● http://en.wikipedia.org/wiki/List_of_data_

structures
● Book: Programming Pearls
● Book: Purely Functional Data

Structures
● Study your favourite language's

standard library

http://en.wikipedia.org/wiki/List_of_data_structures
http://en.wikipedia.org/wiki/List_of_data_structures

Data structure design

First, identify what operations the data
structure must support
● Often there's an existing data structure

you can use
● Or perhaps you can adapt an existing

one?
Then decide on:
● A representation (tree, array, etc.)
● An invariant
These hopefully drive the rest of the design!

Data structure design

Finally, remember the First and Second
Rules of Program Optimisation:

1. Don’t do it.
2. (For experts only!): Don’t do it yet.

Keep things simple!
● No point optimising your algorithms to have

O(log n) complexity if it turns out n ≤ 10
● Profile your program to find the bottlenecks are
● Use big-O complexity to get a handle on

performance before you start implementing it

What we haven't had time for

Amortised data structures

We briefly mentioned amortised
complexity:
● e.g. dynamic arrays
● adding an element normally takes O(1) time
● but occasionally it can take O(n) time
● but the O(n) case happens rarely enough that on

average adding an element takes O(1) time
● and so we say that it takes amortised O(1) time

Amortised complexity

Splay trees are a balanced BST having
amortised O(log n) complexity
● The tree sometimes becomes unbalanced but this

happens rarely enough that the average time per
operation is still O(log n)

Skew heaps are a priority queue having
amortised O(log n) merge
● Similar to leftist heaps but simpler, and faster in

practice!

See book chapters 21 (splay trees) and 22
(skew heaps)

Probabilistic algorithms

Sometimes it helps to make random choices
● Example: quicksort with a random pivot has expected

O(n log n) complexity

Probabilistic algorithms and data structures
use randomness in their implementation
● Downside: harder to analyse, small chance of poor

performance (but if the probability is low enough...)

Skip lists: a nice map-like data structure with
O(log n) expected complexity
Randomised splay tree: a balanced BST with
O(log n) expected complexity

Functional data structures

Zippers: allow you to update functional
data structures efficiently
● http://www.haskell.org/haskellwiki/Zipper

Finger trees: a sequence data type with an
impressive list of features:
● O(1) access near the front and back of the sequence
● O(log n) random access
● O(log n) concatenation and splitting
● http://www.soi.city.ac.uk/~ross/papers/FingerTree.pdf
● Data.Sequence in GHC

http://www.haskell.org/haskellwiki/Zipper
http://www.soi.city.ac.uk/~ross/papers/FingerTree.pdf

Lab deadlines

If you've missed the final deadline for a
lab, don't panic!
On June the 3rd I will sit in my office
(5463) from 1-3 and you can show me
your lab in person

The exam
26th of May, 14:00 – 18:00, Hörsalsvägen

The exam

You can bring a fusklapp, handwritten on both
sides
6 questions, to pass: answer 3 questions
● There might be parts marked “for VG” - you don't need to

answer those!

For a VG:
● Answer 5 questions
● If there are any parts marked “for VG”, you do need to answer

them!

Best preparation: do the exercises, make sure you
understand the labs, read the sample exam
What you need to know: the following!

Data structures

Arrays, dynamic arrays
Linked lists (single-linked, doubly-linked)
Queue and stack implementations using arrays or linked lists
Binary trees, binary search trees, AVL trees, red-black trees,
2-3 trees
● not deletion for AVL, red-black or 2-3 trees – but still for plain BSTs!

Hash tables
● Rehashing, linear probing, linear chaining – not how to construct a good

hash function

Graphs (weighted, unweighted, directed, undirected),
adjacency lists, adjacency matrices
Binary heaps, leftist heaps

Algorithms

Data structure algorithms (e.g., list
insertion, BST lookup)
Binary search
Tree traversal: in-order, pre-order, post-
order
Graph algorithms:
● breadth-first and depth-first search
● Dijkstra's and Prim's algorithms (using a priority

queue)

Sorting algorithms

Bubblesort, selection sort, insertion sort
● In-place versions

Quicksort, mergesort
● Strategies for choosing the pivot – first element,

median-of-three, randomised

Theory

Complexity and big-O notation
● For iterative and recursive functions – basically,

what's in the complexity hand-in

Data structure invariants

Good luck!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24

