
Dijkstra's algorithm
Prim's algorithm

The (weighted) shortest path problem

Find the shortest path from point A to
point B in a weighted graph
(the path with least weight)
Useful in e.g.,
route planning,
network routing
Most common approach:
Dijkstra's algorithm,
which works when all
edges have positive weight

Dijkstra's algorithm

Dijkstra's algorithm computes
the distance from a start
node to all other nodes
Idea: maintain a set S
of nodes whose
distances we know,
and their distances
Initially, S
only contains the start
node, with distance 0

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

At each step: find the
closest node that's not in S
This node must be
adjacent to a node in S
(why?)
Hence the path to that
node must consist of:
● Taking the shortest path

to some node in S, then
● taking a single edge to

get to the new node

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

For each node x in S, and
each neighbour y of x:
● Add the distance to x and

the distance from x to y

Whichever node y has
the shortest distance,
add it to S!
● This is the closest node

not in S (what is the path
to this node?)

Repeat until all nodes
are in S

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0}→
Neighbours of Dunwich
are Blaxhall (distance 15),
Harwich (distance 53)
So add Blaxhall 15→
to S

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15}→
Neighbours of S
are:
● Feering (distance

15 + 46 = 61)
● Harwich (distance 53 –

also via Blaxhall
15 + 40 = 55)

So add Harwich 53→
to S

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53}→
Neighbours of S
are:
● Feering (distance

15 + 46 = 61)
● Tiptree (distance

53 + 31 = 84)
● Clacton (distance

53 + 17 = 70)

So add Feering 61→
to S

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53,→
 Feering 61}→
Neighbours of S
are:
● Tiptree (distance

61 + 3 = 64,
also via Harwich 55 + 29 = 84)

● Clacton (distance
53 + 17 = 70)

● Malden (distance
61 + 11 = 72)

So add Tiptree 64→
to S

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53,→
 Feering 61,→
 Tiptree 64}→
Neighbours of S
are:
● Clacton (distance

53 + 17 = 70,
also via Tiptree 64 + 29 = 93)

● Maldon (distance
61 + 11 = 72,
also via Tiptree 64 + 8 = 72)

So add Clacton 70→
to S

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53,→
 Feering 61,→
 Tiptree 64,→
 Clacton 70}→
Neighbours of S
are:
● Maldon (distance

61 + 11 = 72,
also via Tiptree 64 + 8 = 72,
also via Clacton 70 + 40 = 110)

So add Maldon 72→
to S

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53,→
 Feering 61,→
 Tiptree 64,→
 Clacton 70,→
 Maldon 72}→
Finished!
Dijkstra's algorithm
enumerates nodes in
order of how far away
they are from the start node

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

To arrive at Maldon, we
must take the edge from

Feering, Tiptree or Clacton

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Clacton: → 70
Clacton Maldon edge: → 40

So coming via this edge: 110
Dunwich Maldon: → 72
This route won't work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Tiptree: → 64
Tiptree Maldon edge: → 8

So coming via this edge: 72
Dunwich Maldon: → 72

This route will work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Now we know we can come
via Tiptree – so just repeat

the process to work out
how to get to Tiptree!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Harwich: → 53
Harwich Tiptree edge: → 31

So coming via this edge: 84
Dunwich Tiptree: → 64
This route won't work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Feering: → 61
Feering Tiptree edge: → 3

So coming via this edge: 64
Dunwich Tiptree: → 64

This route will work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Repeat the process
for Feering

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Blaxhall: → 15
Blaxhall Feering edge: → 46

So coming via this edge: 61
Dunwich Feering: → 61

This route will work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Repeat the process
for Blaxhall

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Harwich: → 53
Harwich Blaxhall edge: → 40

So coming via this edge: 93
Dunwich Blaxhall: → 15
This route won't work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich Dunwich: → 0
Dunwich Blaxhall edge: → 15

So coming via this edge: 15
Dunwich Blaxhall: → 15

This route will work!

Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich 0,→
Blaxhall 15,→
Harwich 53,→
Feering 61,→
Tiptree 64,→
Clacton 70,→
Maldon 72→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Now we have found our
way back to the start node

and have the shortest path!

Dijkstra's algorithm

Let S = {start node 0}→
While not all nodes are in S,
● For each node x d→ in S, and each neighbour y of

x, calculate d' = d + cost of edge from x to y
● Take the smallest d' calculated and its y and add

y d'→ to S

This computes the shortest distance to
each node, from which we can reconstruct
the shortest path to any node
What is the efficiency of this algorithm?

Dijkstra's algorithm

Let S = {start node 0}→
While not all nodes are in S,
● For each node x d→ in S, and each neighbour y of

x, calculate d' = d + cost of edge from x to y
● Take the smallest d' calculated and its y and add

y d'→ to S

This computes the shortest distance to
each node, from which we can reconstruct
the shortest path to any node
What is the efficiency of this algorithm?

We add one node
to S each time

through the loop –
loop runs |V| times

Each time through the
outer loop, we loop

through all nodes in S,
which by the end

contains |V| nodes

Total:
O(|VE|)!

Dijkstra's algorithm, made efficient

The algorithm so far is O(|V|2)
This is because this step:
● For all nodes adjacent to a node in S, calculate

their distance from the start node, and pick the
closest one

takes O(|V|) time, and we execute it
once for every node in the graph
How can we make this faster?

Dijkstra's algorithm, made efficient

Answer: use a priority queue!
Our priority queue will contain:
● all neighbours of nodes in S (the yellow nodes from our

diagram)
● together with their distances

Instead of searching for the nearest neighbour
to S, we can just ask the priority queue for the
node with the smallest distance
Whenever we add a node to S, we will add each
of its neighbours that are not in S to the priority
queue

Dijkstra's algorithm

S = {Dunwich 0}→
Q = {Blaxhall 15,
 Harwich 53}
Remove the smallest
element of Q,
“Blaxhall 15”.
Add Blaxhall 15→
to S, and add Blaxhall's
neighbours to Q.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15}→
Q = {Harwich 53,
 Feering 61,
 Harwich 55}
Remove the smallest
element of Q,
“Harwich 53”.
Add Harwich 53 to S,→
and add Harwich's
neighbours to Q.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53}→
Q = {Feering 61,
 Harwich 55,
 Tiptree 84,
 Clacton 70}
Remove the smallest
element of Q,
“Harwich 55”.
Oh! Harwich is already in S.
So just ignore it.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53}→
Q = {Feering 61,
 Tiptree 84,
 Clacton 70}
Remove the smallest
element of Q,
“Feering 61”.
Add Feering 61 to S,→
and add Feering's
neighbours to Q.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm

S = {Dunwich 0,→
 Blaxhall 15,→
 Harwich 53,→
 Feering 61}→
Q = {Tiptree 84,
 Tiptree 64,
 Maldon 72,
 Clacton 70}

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dijkstra's algorithm, efficiently

Let S = {start node 0} and Q = {}→
For each of the start node's neighbours x,
where the edge has weight d, add x to Q with
priority d
While not all nodes are in S,
● Remove the node y from Q that has the smallest

priority (distance)
● If y is in S, do nothing
● Otherwise, add y d to S and for all of → y's

neighbours z add z to Q with priority “d + weight of
edge from y to z”

Dijkstra's algorithm, efficiently

Let S = {start node 0} and Q = {}→
For each of the start node's neighbours x,
where the edge has weight d, add x to Q with
priority d
While not all nodes are in S,
● Remove the node y from Q that has the smallest

priority (distance)
● If y is in S, do nothing
● Otherwise, add y d to S and for all of → y's

neighbours z add z to Q with priority “d + weight of
edge from y to z”

Maximum size of Q is |E|,
total of O(|V| + |E|)

priority queue operations,
so total time:

O((|V| + |E|) log |E|)
or

O(n log n) where n = |V| + |E|

Minimum spanning trees

A spanning tree of a graph
is a subgraph (a graph
obtained by deleting
some of the edges) which:
● is acyclic
● is connected

A minimum spanning
tree is one where the
total weight of the edges
is as low as possible

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

40

3
17

29
8

Blaxhall

Minimum spanning trees

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

40

3
17

29
8

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Prim's algorithm

We will build a minimum spanning tree by
starting with no edges and adding edges
until the graph is connected
Keep a set S of all the nodes that are in the
tree so far, initially containing one
arbitrary node
While there is a node not in S:
● Pick the lowest-weight edge between a node in S and

a node not in S
● Add that edge to the spanning tree, and add the

node to S

Minimum spanning treesS = {Feering}
Lowest-weight edge

from S to not-S
is Feering Tiptree→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

Blaxhall

Minimum spanning treesS = {Feering, Tiptree}
Lowest-weight edge

from S to not-S
is Tiptree Maldon→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon}
Lowest-weight edge

from S to not-S
is Tiptree Clacton→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

8

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton}
Lowest-weight edge

from S to not-S
is Clacton Harwich→

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

29
8

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton,
Harwich}

Lowest-weight edge
from S to not-S

is Harwich Blaxhall→
Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering
3

17
29

8

Blaxhall

Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton,
Harwich, Blaxhall}

Lowest-weight edge
from S to not-S

is Blaxhall Dunwich→
Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

40

3
17

29
8

Blaxhall

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

40

3
17

29
8

Blaxhall

Minimum spanning trees
Notice:

we get a minimum
spanning tree

whatever node we start at!
For this graph,

because there is only one
minimum spanning tree,
we always get that one.

Dunwich

Harwich

Tiptree

Clacton

Maldon

Feering

15

53
40

46

3
31

17
29

40

8
11

Blaxhall

Prim's algorithm, efficiently

The operation
● Pick the lowest-weight edge between a node in S and a

node not in S

takes O(n) time if we're not careful! Then Prim's
algorithm will be O(n2)
To implement Prim's algorithm, use a priority queue
containing all edges between S and not-S
● Whenever you add a node to S, add all of its edges to nodes in

not-S to a priority queue
● To find the lowest-weight edge, just find the minimum element

of the priority queue
● Just like in Dijkstra's algorithm, the priority queue might return

an edge between two elements that are now in S: ignore it

New time: O(n log n) :)

Summary

Dijkstra's algorithm – finding shortest paths in
weighted graphs – some extensions (not in course):
● Bellman-Ford: works when weights are negative
● A* - faster but assumes the triangle inequality

Prim's algorithm – finding minimum spanning trees
Both are greedy algorithms – they repeatedly find the
“best” next element
● Common style of algorithm design

Both use a priority queue to get O(n log n)
Many many many more graph algorithms
● Unfortunately the book doesn't mention many – see

http://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms
for a long list

http://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

