Dijkstra's algorithm Prim's algorithm

The (weighted) shortest path problem

Find the shortest path from point A to point B in a weighted graph (the path with least weight)
Useful in e.g.,
route planning,
network routing
Most common approach:
Dijkstra's algorithm, which works when all edges have positive weight

Dijkstra's algorithm

Dijkstra's algorithm computes the distance from a start node to all other nodes
Idea: maintain a set S of nodes whose distances we know, and their distances

Initially, S
only contains the start node, with distance 0

Dijkstra's algorithm

At each step: find the closest node that's not in S This node must be adjacent to a node in S (why?)
Hence the path to that node must consist of:

- Taking the shortest path to some node in S, then
- taking a single edge to get to the new node

Dijkstra's algorithm

For each node x in S, and each neighbour y of x :

- Add the distance to x and the distance from x to y Whichever node y has the shortest distance, add it to S!
- This is the closest node not in S (what is the path to this node?)
Repeat until all nodes are in S

Dijkstra's algorithm

$S=\{$ Dunwich $\rightarrow 0\}$
Neighbours of Dunwich are Blaxhall (distance 15), Harwich (distance 53) So add Blaxhall $\rightarrow 15$ to S

Dijkstra's algorithm

$$
\begin{aligned}
S= & \{\text { Dunwich } \rightarrow 0, \\
& \text { Blaxhall } \rightarrow 15\}
\end{aligned}
$$

Neighbours of S are:

- Feering (distance $15+46=61$)
- Harwich (distance 53 also via Blaxhall $15+40=55$)
So add Harwich $\rightarrow 53$ to S

Dijkstra's algorithm

$S=\{$ Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15, Harwich \rightarrow 53\}
Neighbours of S are:

- Feering (distance $15+46=61$)
- Tiptree (distance $53+31=84)$
- Clacton (distance $53+17=70$)
So add Feering $\rightarrow 61$ to S

Dijkstra's algorithm

$S=\{$ Dunwich $\rightarrow 0$,
Blaxhall \rightarrow 15, Harwich \rightarrow 53,
Feering $\rightarrow 61\}$
Neighbours of S are:

- Tiptree (distance $61+3=64$, also via Harwich $55+29=84$)
- Clacton (distance $53+17=70$)
- Malden (distance $61+11$ = 72)
So add Tiptree $\rightarrow 64$ to S

Dijkstra's algorithm

$S=\{$ Dunwich $\rightarrow 0$, Blaxhall $\rightarrow 15$, Harwich \rightarrow 53, Feering $\rightarrow 61$, Tiptree $\rightarrow 64\}$
Neighbours of S are:

- Clacton (distance $53+17=70$, also via Tiptree $64+29=93$)
- Maldon (distance $61+11=72$, also via Tiptree $64+8=72$)
So add Clacton $\rightarrow 70$ to S

Dijkstra's algorithm

$$
\begin{aligned}
S= & \{\text { Dunwich } \rightarrow 0, \\
& \text { Blaxhall } \rightarrow 15, \\
& \text { Harwich } \rightarrow 53, \\
& \text { Feering } \rightarrow 61, \\
& \text { Tiptree } \rightarrow 64, \\
& \text { Clacton } \rightarrow 70\}
\end{aligned}
$$

Neighbours of S are:

- Maldon (distance $61+11=72$, also via Tiptree $64+8=72$, also via Clacton $70+40=110$)
So add Maldon $\rightarrow 72$ to S

Dijkstra's algorithm

$$
\begin{aligned}
S= & \{\text { Dunwich } \rightarrow 0, \\
& \text { Blaxhall } \rightarrow 15, \\
& \text { Harwich } \rightarrow 53, \\
& \text { Feering } \rightarrow 61, \\
& \text { Tiptree } \rightarrow 64, \\
& \text { Clacton } \rightarrow 70, \\
& \text { Maldon } \rightarrow 72\}
\end{aligned}
$$

Finished!
Dijkstra's algorithm enumerates nodes in order of how far away they are from the start node

Dijkstra's algorithm

Once we have these distances, we can use them to find the shortest path to any node! e.g. take Maldon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich \rightarrow 53,
Feering \rightarrow 61,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

าm

Once we must take the edge from we can u shortest e.g. take Maıaon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich \rightarrow 53,
Feering $\rightarrow 61$,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Dunwich \rightarrow Clacton: $\mathbf{7 0}$
 Clacton \rightarrow Maldon edge: $\mathbf{4 0}$

n

Once we So coming via this edge: $\mathbf{1 1 0}$ we can $u \quad$ Dunwich \rightarrow Maldon: 72 shortest This route won't work! e.g. take Maraon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich $\rightarrow 53$,
Feering $\rightarrow 61$,
Tiptree \rightarrow 64,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Dunwich \rightarrow Tiptree: 64 Tiptree \rightarrow Maldon edge: 8

Once we So coming via this edge: 72 we can $u \quad$ Dunwich \rightarrow Maldon: 72 shortest This route will work! e.g. take Maraon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich $\rightarrow 53$,
Feering $\rightarrow 61$,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Once we we can u shortest

Now we know we can come via Tiptree - so just repeat the process to work out how to get to Tiptree! e.g. take Maıaon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$,
Blaxhall \rightarrow 15,
Harwich $\rightarrow 53$,
Feering $\rightarrow 61$,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Dunwich \rightarrow Harwich: 53 Harwich \rightarrow Tiptree edge: 31

Once we So coming via this edge: $\mathbf{8 4}$ we can u Dunwich \rightarrow Tiptree: $\mathbf{6 4}$ shortest This route won't work! e.g. take Maraon

Idea: work out which edge we should take on the final leg of the journey

Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich \rightarrow 53, Feering \rightarrow 61,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Dunwich \rightarrow Feering: 61 Feering \rightarrow Tiptree edge: $\mathbf{3}$

Once we So coming via this edge: 64 we can u Dunwich \rightarrow Tiptree: 64 shortest This
Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich $\rightarrow 53$,
Feering $\rightarrow 61$,
Tiptree \rightarrow 64,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Once we we can u shortest

Repeat the process for Feering e.g. take Maraon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall $\rightarrow 15$,
Harwich \rightarrow 53,
Feering \rightarrow 61,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Dunwich \rightarrow Blaxhall: 15 n Blaxhall \rightarrow Feering edge: 46

Once we So coming via this edge: 61 we can $u \quad$ Dunwich \rightarrow Feering: 61 shortest This route will work! e.g. take Maraon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich $\rightarrow 53$,
Feering \rightarrow 61,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

algorithm

Repeat the process for Blaxhall

ances,
-

e.g. таке ivıaıaon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich \rightarrow 53,
Feering $\rightarrow 61$,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Dunwich \rightarrow Harwich: $\mathbf{5 3}$ algorithm Harwich \rightarrow Blaxhall edge: $\mathbf{4 0}$

So coming via this edge: 93 ances, Dunwich \rightarrow Blaxhall: 15 This route won't work!
e.g. таке ivıaıaon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich \rightarrow 53,
Feering $\rightarrow 61$,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Dunwich \rightarrow Dunwich: $\mathbf{0}$ algorithm

 Dunwich \rightarrow Blaxhall edge: 15So coming via this edge: 15 ances, Dunwich \rightarrow Blaxhall: 15 This route will work! .e! e.g. таке iviaiaon Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15,
Harwich \rightarrow 53,
Feering \rightarrow 61,
Tiptree \rightarrow 64,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

algorithm

Now we have found our way back to the start node and have the shortest path!

e.g. таке iviaiaon

Idea: work out which edge we should take on the final leg of the journey
Dunwich $\rightarrow 0$,
Blaxhall \rightarrow 15,
Harwich \rightarrow 53,
Feering $\rightarrow 61$,
Tiptree $\rightarrow 64$,
Clacton $\rightarrow 70$,
Maldon $\rightarrow 72$

Dijkstra's algorithm

Let $S=\{$ start node $\rightarrow 0\}$
While not all nodes are in S,

- For each node $x \rightarrow d$ in S, and each neighbour y of x, calculate $d^{\prime}=d+$ cost of edge from x to y
- Take the smallest d^{\prime} calculated and its y and add $y \rightarrow d^{\prime}$ to S
This computes the shortest distance to each node, from which we can reconstruct the shortest path to any node
What is the efficiency of this algorithm?

Each time through the outer loop, we loop through all nodes in S, which by the end contains $|\mathrm{V}|$ nodes
ra's algori We add one node to S each time through the loop $\left.\mathrm{l}_{\mathrm{e}} \rightarrow 0\right\}$ loop runs $|V|$ times
vvinle nol an node: are in C

- For each node $x \rightarrow d$ in S ad each neighbour y of x, calculate $d^{\prime}=d+c o$.of edge from x to y
- Take the smalleot d^{\prime} calculated and its y and add $y \rightarrow d^{\prime}$ to S
This computes the sh
m-nto each node, from w. the shortest patl.
.onstruct

What is the efficic...
. s algorithm?

Dijkstra's algorithm, made efficient

The algorithm so far is $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$
This is because this step:

- For all nodes adjacent to a node in S, calculate their distance from the start node, and pick the closest one
takes $\mathrm{O}(|\mathrm{V}|)$ time, and we execute it once for every node in the graph
How can we make this faster?

Dijkstra's algorithm, made efficient

Answer: use a priority queue!
Our priority queue will contain:

- all neighbours of nodes in S (the yellow nodes from our diagram)
- together with their distances

Instead of searching for the nearest neighbour to S, we can just ask the priority queue for the node with the smallest distance
Whenever we add a node to S, we will add each of its neighbours that are not in S to the priority queue

Dijkstra's algorithm

$S=\{$ Dunwich $\rightarrow 0\}$
$\mathrm{Q}=\{$ Blaxhall 15, Harwich 53\}
Remove the smallest element of Q , "Blaxhall 15".
Add Blaxhall $\rightarrow 15$ to S, and add Blaxhall's neighbours to Q.

Dijkstra's algorithm

$S=\{$ Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15\}
$\mathrm{Q}=$ \{Harwich 53, Feering 61, Harwich 55\}
Remove the smallest element of Q, "Harwich 53".
Add Harwich $\rightarrow 53$ to S, and add Harwich's neighbours to Q .

Dijkstra's algorithm

$S=\{$ Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15, Harwich $\rightarrow 53\}$
$\mathrm{Q}=\{$ Feering 61, Harwich 55, Tiptree 84, Clacton 70\}

Remove the smallest element of Q, "Harwich 55".
Oh! Harwich is already in S. So just ignore it.

Dijkstra's algorithm

$S=\{$ Dunwich $\rightarrow 0$, Blaxhall \rightarrow 15, Harwich $\rightarrow 53$ \}
$\mathrm{Q}=\{$ Feering 61, Tiptree 84, Clacton 70$\}$
Remove the smallest element of Q , "Feering 61".
Add Feering $\rightarrow 61$ to S, and add Feering's neighbours to Q .

Dijkstra's algorithm

$$
\begin{aligned}
S= & \{\text { Dunwich } \rightarrow 0, \\
& \text { Blaxhall } \rightarrow 15, \\
& \text { Harwich } \rightarrow 53, \\
& \text { Feering } \rightarrow 61\} \\
\mathrm{Q}= & \{\text { Tiptree } 84, \\
& \text { Tiptree } 64, \\
& \text { Maldon } 72, \\
& \text { Clacton } 70\}
\end{aligned}
$$

Dijkstra's algorithm, efficiently

Let $S=\{$ start node $\rightarrow 0\}$ and $\mathrm{Q}=\{ \}$
For each of the start node's neighbours χ, where the edge has weight d, add x to Q with priority d
While not all nodes are in S ,

- Remove the node y from Q that has the smallest priority (distance)
- If y is in S, do nothing
- Otherwise, add $y \rightarrow d$ to S and for all of y 's neighbours z add z to Q with priority " $d+$ weight of edge from y to $z "$

Dij

Maximum size of Q is $|\mathrm{E}|$, total of $O(|V|+|E|)$ priority queue operations, so total time:
For ea

$$
\mathrm{O}((|\mathrm{~V}|+|E|) \log |\mathrm{E}|)
$$

jurs χ,
where
or
Let $S=$
priority u
While not all nodes are in S,

- Remove the node y from Q that has the smallest priority (distance)
- If y is in S, do nothing
- Otherwise, add y $\rightarrow \mathrm{d}$ to S and for all of y 's neighbours z add z to Q with priority " $d+$ weight of edge from y to z "

Minimum spanning trees

A spanning tree of a graph is a subgraph (a graph obtained by deleting some of the edges) which:

- is acyclic
- is connected

A minimum spanning tree is one where the total weight of the edges is as low as possible

Minimum spanning trees

Prim's algorithm

We will build a minimum spanning tree by starting with no edges and adding edges until the graph is connected
Keep a set S of all the nodes that are in the tree so far, initially containing one arbitrary node
While there is a node not in S :

- Pick the lowest-weight edge between a node in S and a node not in S
- Add that edge to the spanning tree, and add the node to S

Minimun $\begin{gathered}\mathrm{S}=\{\text { Feering }\} \\ \text { Lowest-weight edge } \\ \text { こeS }\end{gathered}$ from S to not-S

Notice:
Minimul we get a minimum spanning tree whatever node we start at! For this graph, because there is only one minimum spanning tree, we always get that one.

Prim's algorithm, efficiently

The operation

- Pick the lowest-weight edge between a node in S and a node not in S
takes O(n) time if we're not careful! Then Prim's algorithm will be $\mathrm{O}\left(\mathrm{n}^{2}\right)$
To implement Prim's algorithm, use a priority queue containing all edges between S and not-S
- Whenever you add a node to S, add all of its edges to nodes in not-S to a priority queue
- To find the lowest-weight edge, just find the minimum element of the priority queue
- Just like in Dijkstra's algorithm, the priority queue might return an edge between two elements that are now in S: ignore it
New time: O(n $\log n):$)

Summary

Dijkstra's algorithm - finding shortest paths in weighted graphs - some extensions (not in course):

- Bellman-Ford: works when weights are negative
- A* - faster but assumes the triangle inequality

Prim's algorithm - finding minimum spanning trees Both are greedy algorithms - they repeatedly find the "best" next element

- Common style of algorithm design

Both use a priority queue to get $\mathrm{O}(\mathrm{n} \log \mathrm{n})$
Many many many more graph algorithms

- Unfortunately the book doesn't mention many - see http://en.wikipedia.org/wiki/List_of_algorithms\#Graph_algorithms for a long list

