
Dijkstra's algorithm
Prim's algorithm



The (weighted) shortest path problem

Find the shortest path from point A to 
point B in a weighted graph
(the path with least weight)
Useful in e.g.,
route planning,
network routing
Most common approach:
Dijkstra's algorithm,
which works when all
edges have positive weight



Dijkstra's algorithm

Dijkstra's algorithm computes
the distance from a start
node to all other nodes
Idea: maintain a set S
of nodes whose
distances we know,
and their distances
Initially, S
only contains the start
node, with distance 0
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Dijkstra's algorithm

At each step: find the
closest node that's not in S
This node must be
adjacent to a node in S
(why?)
Hence the path to that
node must consist of:
● Taking the shortest path

to some node in S, then
● taking a single edge to

get to the new node
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Dijkstra's algorithm

For each node x in S, and
each neighbour y of x:
● Add the distance to x and

the distance from x to y

Whichever node y has
the shortest distance,
add it to S!
● This is the closest node

not in S (what is the path
to this node?)

Repeat until all nodes
are in S
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Dijkstra's algorithm

S = {Dunwich  0}→
Neighbours of Dunwich
are Blaxhall (distance 15),
Harwich (distance 53)
So add Blaxhall  15→
to S
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15}→
Neighbours of S
are:
● Feering (distance

15 + 46 = 61)
● Harwich (distance 53 –

also via Blaxhall
15 + 40 = 55)

So add Harwich  53→
to S
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15,→
         Harwich  53}→
Neighbours of S
are:
● Feering (distance

15 + 46 = 61)
● Tiptree (distance

53 + 31 = 84)
● Clacton (distance

53 + 17 = 70)

So add Feering  61→
to S
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15,→
         Harwich  53,→
         Feering  61}→
Neighbours of S
are:
● Tiptree (distance

61 + 3 = 64,
also via Harwich 55 + 29 = 84)

● Clacton (distance
53 + 17 = 70)

● Malden (distance
61 + 11 = 72)

So add Tiptree  64→
to S
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15,→
         Harwich  53,→
         Feering  61,→
         Tiptree  64}→
Neighbours of S
are:
● Clacton (distance

53 + 17 = 70,
also via Tiptree 64 + 29 = 93)

● Maldon (distance
61 + 11 = 72,
also via Tiptree 64 + 8 = 72)

So add Clacton  70→
to S
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15,→
         Harwich  53,→
         Feering  61,→
         Tiptree  64,→
         Clacton  70}→
Neighbours of S
are:
● Maldon (distance

61 + 11 = 72,
also via Tiptree 64 + 8 = 72,
also via Clacton 70 + 40 = 110)

So add Maldon  72→
to S
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15,→
         Harwich  53,→
         Feering  61,→
         Tiptree  64,→
         Clacton  70,→
         Maldon  72}→
Finished!
Dijkstra's algorithm
enumerates nodes in
order of how far away
they are from the start node
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Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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To arrive at Maldon, we
must take the edge from

Feering, Tiptree or Clacton



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Dunwich  Clacton: → 70
Clacton  Maldon edge: → 40

So coming via this edge: 110
Dunwich  Maldon: → 72
This route won't work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Dunwich  Tiptree: → 64
Tiptree  Maldon edge: → 8

So coming via this edge: 72
Dunwich  Maldon: → 72

This route will work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Now we know we can come
via Tiptree – so just repeat

the process to work out
how to get to Tiptree!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Dunwich  Harwich: → 53
Harwich  Tiptree edge: → 31

So coming via this edge: 84
Dunwich  Tiptree: → 64
This route won't work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Dunwich  Feering: → 61
Feering  Tiptree edge: → 3

So coming via this edge: 64
Dunwich  Tiptree: → 64

This route will work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Repeat the process
for Feering



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Dunwich  Blaxhall: → 15
Blaxhall  Feering edge: → 46

So coming via this edge: 61
Dunwich  Feering: → 61

This route will work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Repeat the process
for Blaxhall



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Dunwich  Harwich: → 53
Harwich  Blaxhall edge: → 40

So coming via this edge: 93
Dunwich  Blaxhall: → 15
This route won't work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Dunwich  Dunwich: → 0
Dunwich  Blaxhall edge: → 15

So coming via this edge: 15
Dunwich  Blaxhall: → 15

This route will work!



Dijkstra's algorithm

Once we have these distances,
we can use them to find the
shortest path to any node!
e.g. take Maldon
Idea: work out which edge
we should take on the
final leg of the journey
Dunwich  0,→
Blaxhall  15,→
Harwich  53,→
Feering  61,→
Tiptree  64,→
Clacton  70,→
Maldon  72→
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Now we have found our
way back to the start node

and have the shortest path!



Dijkstra's algorithm

Let S = {start node  0}→
While not all nodes are in S,
● For each node x  d→  in S, and each neighbour y of 

x, calculate d' = d + cost of edge from x to y
● Take the smallest d' calculated and its y and add

y  d'→  to S

This computes the shortest distance to 
each node, from which we can reconstruct 
the shortest path to any node
What is the efficiency of this algorithm?



Dijkstra's algorithm

Let S = {start node  0}→
While not all nodes are in S,
● For each node x  d→  in S, and each neighbour y of 

x, calculate d' = d + cost of edge from x to y
● Take the smallest d' calculated and its y and add

y  d'→  to S

This computes the shortest distance to 
each node, from which we can reconstruct 
the shortest path to any node
What is the efficiency of this algorithm?

We add one node
to S each time

through the loop –
loop runs |V| times

Each time through the
outer loop, we loop

through all nodes in S,
which by the end

contains |V| nodes

Total:
O(|VE|)!



Dijkstra's algorithm, made efficient

The algorithm so far is O(|V|2)
This is because this step:
● For all nodes adjacent to a node in S, calculate 

their distance from the start node, and pick the 
closest one

takes O(|V|) time, and we execute it 
once for every node in the graph
How can we make this faster?



Dijkstra's algorithm, made efficient

Answer: use a priority queue!
Our priority queue will contain:
● all neighbours of nodes in S (the yellow nodes from our 

diagram)
● together with their distances

Instead of searching for the nearest neighbour 
to S, we can just ask the priority queue for the 
node with the smallest distance
Whenever we add a node to S, we will add each 
of its neighbours that are not in S to the priority 
queue



Dijkstra's algorithm

S = {Dunwich  0}→
Q = {Blaxhall 15,
          Harwich 53}
Remove the smallest
element of Q,
“Blaxhall 15”.
Add Blaxhall  15→
to S, and add Blaxhall's
neighbours to Q.
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15}→
Q = {Harwich 53,
          Feering 61,
          Harwich 55}
Remove the smallest
element of Q,
“Harwich 53”.
Add Harwich  53 to S,→
and add Harwich's
neighbours to Q.
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15,→
         Harwich  53}→
Q = {Feering 61,
          Harwich 55,
          Tiptree 84,
          Clacton 70}
Remove the smallest
element of Q,
“Harwich 55”.
Oh! Harwich is already in S.
So just ignore it.
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15,→
         Harwich  53}→
Q = {Feering 61,
          Tiptree 84,
          Clacton 70}
Remove the smallest
element of Q,
“Feering 61”.
Add Feering  61 to S,→
and add Feering's
neighbours to Q.
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Dijkstra's algorithm

S = {Dunwich  0,→
         Blaxhall  15,→
         Harwich  53,→
         Feering  61}→
Q = {Tiptree 84,
          Tiptree 64,
          Maldon 72,
          Clacton 70}
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Dijkstra's algorithm, efficiently

Let S = {start node  0} and Q = {}→
For each of the start node's neighbours x, 
where the edge has weight d, add x to Q with 
priority d
While not all nodes are in S,
● Remove the node y from Q that has the smallest 

priority (distance)
● If y is in S, do nothing
● Otherwise, add y  d to S and for all of → y's 

neighbours z add z to Q with priority “d + weight of 
edge from y to z”



Dijkstra's algorithm, efficiently

Let S = {start node  0} and Q = {}→
For each of the start node's neighbours x, 
where the edge has weight d, add x to Q with 
priority d
While not all nodes are in S,
● Remove the node y from Q that has the smallest 

priority (distance)
● If y is in S, do nothing
● Otherwise, add y  d to S and for all of → y's 

neighbours z add z to Q with priority “d + weight of 
edge from y to z”

Maximum size of Q is |E|,
total of O(|V| + |E|)

priority queue operations,
so total time:

O((|V| + |E|) log |E|)
or

O(n log n) where n = |V| + |E|



Minimum spanning trees

A spanning tree of a graph
is a subgraph (a graph
obtained by deleting
some of the edges) which:
● is acyclic
● is connected

A minimum spanning
tree is one where the
total weight of the edges
is as low as possible
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Minimum spanning trees
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Prim's algorithm

We will build a minimum spanning tree by 
starting with no edges and adding edges 
until the graph is connected
Keep a set S of all the nodes that are in the 
tree so far, initially containing one 
arbitrary node
While there is a node not in S:
● Pick the lowest-weight edge between a node in S and 

a node not in S
● Add that edge to the spanning tree, and add the 

node to S



Minimum spanning treesS = {Feering}
Lowest-weight edge

from S to not-S
is Feering  Tiptree→
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Minimum spanning treesS = {Feering, Tiptree}
Lowest-weight edge

from S to not-S
is Tiptree  Maldon→
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Minimum spanning trees
S = {Feering, Tiptree,

Maldon}
Lowest-weight edge

from S to not-S
is Tiptree  Clacton→
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Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton}
Lowest-weight edge

from S to not-S
is Clacton  Harwich→
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Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton,
Harwich}

Lowest-weight edge
from S to not-S

is Harwich  Blaxhall→
Dunwich
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Minimum spanning trees
S = {Feering, Tiptree,

Maldon, Clacton,
Harwich, Blaxhall}

Lowest-weight edge
from S to not-S

is Blaxhall  Dunwich→
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Minimum spanning trees
Notice:

we get a minimum
spanning tree

whatever node we start at!
For this graph,

because there is only one
minimum spanning tree,
we always get that one.
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Prim's algorithm, efficiently

The operation
● Pick the lowest-weight edge between a node in S and a

node not in S

takes O(n) time if we're not careful! Then Prim's 
algorithm will be O(n2)
To implement Prim's algorithm, use a priority queue 
containing all edges between S and not-S
● Whenever you add a node to S, add all of its edges to nodes in 

not-S to a priority queue
● To find the lowest-weight edge, just find the minimum element 

of the priority queue
● Just like in Dijkstra's algorithm, the priority queue might return 

an edge between two elements that are now in S: ignore it

New time: O(n log n) :)



Summary

Dijkstra's algorithm – finding shortest paths in 
weighted graphs – some extensions (not in course):
● Bellman-Ford: works when weights are negative
● A* - faster but assumes the triangle inequality

Prim's algorithm – finding minimum spanning trees
Both are greedy algorithms – they repeatedly find the 
“best” next element
● Common style of algorithm design

Both use a priority queue to get O(n log n)
Many many many more graph algorithms
● Unfortunately the book doesn't mention many – see

http://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms
for a long list

http://en.wikipedia.org/wiki/List_of_algorithms#Graph_algorithms
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