
Lab deadlines

Some groups have had trouble making 
the lab 2 final deadline, so I've moved the 
deadlines a bit:
● For lab 2, the final deadline is this Friday
● For lab 3, the deadline is next Friday, the 23rd 

(there's no separate first and final deadline)

If you miss the deadline, there will be a 
chance after the end of the course to pass 
the lab by showing me it in person



Note on copying

It hardly needs to be said, but...
● The labs are part of the examination of the 

course, and as such the work your group submits 
must be the work of your group alone

● Although I don't mind you discussing ideas 
between groups, you must not copy from 
another group!

● GU considers this cheating, and both the person 
who copies a solution, and the person who lets 
their solution be copied, can get in serious trouble



Graphs (chapter 13)



Terminology

A graph is a data structure consisting of 
nodes (or vertices) and edges
● An edge is a connection between two nodes

Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)



5

Nodes are stations
Edges are “bits of line”



6

Nodes are components
Edges are connections



Seven bridges of Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg


Graphs

Graphs are used all over the place:
● communications networks
● many of the algorithms behind the internet
● maps, transport networks, route finding
● finding good ways to lay out components in an 

integrated circuit
● etc.

Anywhere where you have things, and 
relationships between things!



More graphs

Graphs can be either directed or 
undirected
● In an undirected graph, an edge simply connects 

two nodes
● In a directed graph, one node of each edge is the 

source and the other is the target (we draw an 
arrow from the source to the target)

A tree is a special case of a directed graph
● Edge connecting parent to children
● But in a tree, each node can only have one parent 

– in a directed graph, it could have several



Drawing graphs

We represent nodes as points, and edges 
as lines – in a directed graph, edges are 
arrows:

V = {A, B, C, D, E}
E = {(A, B), (A, D), 
         (C, E), (D, E)}

V = {A, B, C, D, E}
E = {(A, B), (B, A), (B, E), (D, A), 
         (E, A), (E, C), (E, D)}



Drawing graphs

The layout of the graph is completely 
irrelevant: only the nodes and edges 
matter

V = {0, 1, 2, 3, 4, 5, 6}
E = {(0, 1), (0, 2), (0, 5), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)}



Weighted graphs

In a weighted graph, each edge has a 
weight associated with it:

A graph can be directed, weighted, 
neither or both
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Paths and cycles

Two vertices are adjacent if there is an 
edge between them:
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Paths and cycles

Two vertices are adjacent if there is an 
edge between them:
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Paths and cycles

In a directed graph, the target of an edge 
is adjacent to the source, not the other 
way around:

A

ED

B

C

A is adjacent to D,
but D is not
adjacent to A



Paths and cycles

A path is a sequence of vertices where 
each vertex is adjacent to its predecessor:
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Paths and cycles

In a simple path, no node or edge appears twice, 
except that the first and last node can be the same
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Paths and cycles

In a simple path, no node or edge appears twice, 
except that the first and last node can be the same
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Paths and cycles

A cycle is a simple path where the first and last 
nodes are the same – a graph that contains a cycle is 
called cyclic, otherwise it is called acyclic
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Connectedness

A graph is called connected if there is a 
path from every node to every other node
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Connectedness

A graph is called connected if there is a 
path from every node to every other node
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Connectedness

If a graph is unconnected, it still consists 
of connected components
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Connectedness

A single unconnected node is a connected 
component in itself

4

8 9

6 7

{4} is a
connected

component



Implementing a graph

Alternative 1: adjacency lists
Keep a list of all nodes in the graph
● With each node, associate a list of all the nodes 

adjacent to that nodes

Alternative 2: adjacency matrix
Keep a 2-dimensional array, with one 
entry for each pair of nodes
● a[i][j] = true if there is an edge between node i 

and node j



Adjacency list – directed graph



Adjacency list – undirected graph

Each edge (a, b)
appears twice –
once in a's list

and once in b's list



Adjacency matrix

We use a 2-dimensional array
For an unweighted graph, we use an array 
of booleans
● a[i][j] = true if there is an edge between node i 

and node j
● For an undirected graph, a[i][j] = a[j][i]

For a weighted graph, the array contains 
weights instead of booleans
● We can e.g. use an infinite value if there is no 

edge between a pair of nodes



Adjacency matrix, weighted graph
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Which representation is best?

It depends on the graph's density
● The quantity |E| / |V|2, where |V| is the 

number of nodes and |E| the number of edges
● In a dense graph, |E| is close to |V|2

● In a sparse graph, |E| is much lower than |V|2

Most graphs are sparse!
● If each node has a bounded number of edges, 

then |E| will be proportional to |V|



Which representation is best?

Many graph algorithms have the form:
for each node u in the graph
   for each node v adjacent to u
      do something with edge (u, v)

With an adjacency list, we can just iterate 
through all nodes and edges in the graph
● This gives a complexity of O(|V| + |E|)

With an adjacency matrix, we must try each 
pair (u, v) of nodes to check if there is an edge
● This gives a complexity of O(|V|2)

Winner: adjacency lists for sparse graphs, 
unclear for dense graphs



Which representation is best?

So:
● if the graph is sparse adjacency lists are better 

(common)
● if the graph is dense an adjacency matrix are better 

(rare)

What about memory consumption?
● An adjacency matrix needs space for |V|2 values, so 

takes O(|V|2) memory – but with a low constant 
factor because each value is just a double

● An adjacency list needs O(|V| + |E|) space – but with 
a higher constant factor because of the node objects

● Again depends on how sparse the graph is



Graph traversals

Many graph algorithms involve visiting 
each node in the graph in some 
systematic order
● Just like with trees, there are several orders you 

might want

The two commonest methods are:
● breadth-first search
● depth-first search



Breadth-first search

A breadth-first search (BFS) visits the 
nodes in the following order:
● First the start node
● Then all nodes that are adjacent to the start node
● Then all nodes that are adjacent to those
● and so on

We end up visiting all nodes that are k 
edges away from the start node, before 
visiting any nodes that are k+1 edges 
away



Implementing breadth-first search

We maintain a queue of nodes that we are 
going to visit next
● Initially, the queue contains the start node

We repeat the following process:
● Remove a node from the queue
● Visit it
● Find all nodes adjacent to the visited node and 

add them to the queue, unless they have been 
visited or added to the queue already



Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search

0

2

3 1

9 8

4

7

6

5

0 queued 0 visited0 unvisited

Queue:
1

Visit order:
0 3

Step 1:
remove node
from queue
and visit it



Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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Example of a breadth-first search
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We reach step 1, but
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and we're finished!



Breadth-first search tree

While doing the BFS, we can
record which node we came
from when visiting each
node in the graph
(we do this when adding
a node to the queue)
By doing this we can
build a tree with the start node at the top
(the breadth-first search tree)
Starting at a node in the tree, and following it up 
to the root, gives us the shortest path from each 
node to the start node



Example: unweighted shortest path

We can represent a maze as a graph – nodes are 
junctions, edges are paths.
How can we find a path from the entrance to the exit?



Example: unweighted shortest path

A breadth-first search tree starting from the entrance 
gives us a path to any node (including the exit)
This path minimises number of junctions – each edge has 
the same cost, we call this the unweighted shortest path



Depth-first search

Depth-first search is an alternative search 
order that's easier to implement
To do a DFS starting from a node:
● visit the node
● recursively DFS all adjacent nodes (skipping any 

already-visited nodes)

Much simpler!



Depth-first search, alternative order

A variation of DFS, where we visit each 
node after visiting the adjacent nodes.
To do a DFS starting from a node:
● mark the node as visited
● recursively DFS all adjacent nodes (skipping any 

already-visited nodes)
● visit the node itself

(Wikipedia calls the order of nodes a 
postordering, compared to a preordering 
for the normal DFS)



BFS vs DFS

BFS visits the nodes in a
“fair” order: the search area
widens gradually
E.g. on a tree: first visit
the root, then the root's
children, then grandchildren, and so on.
DFS will explore a whole branch of the tree 
before backtracking and trying a different 
branch – the order is much more unpredictable 
which makes it unsuitable for some algorithms
(e.g. on the tree to the right, you may explore 3 
directly after 0, or you may explore it last)



Implementing depth-first search

We maintain a stack of nodes that we are 
going to visit next
● Initially, the stack contains the start node

We repeat the following process:
● Remove a node from the stack
● Visit it
● Find all nodes adjacent to the visited node and 

add them to the stack, unless they have been 
visited or added to the stack already

We can implement DFS just
by taking the BFS algorithm
and using a stack instead of

a queue!



Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Example of a depth-first search
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Complexity of BFS and DFS

We only look at each edge once (twice for 
undirected graphs)
● So we look at maximum |E| edges
● (2 × |E| for undirected graphs)

Complexity is therefore O(|E|) - for both 
breadth-first and depth-first search



Directed acyclic graphs

Here is a directed acyclic graph (DAG)
A DAG is a
directed graph
without cycles
That means:
once you
follow an
edge there is
no way back to the
source node – we can say that one node is 
after another in the graph



Example: topological sort

A topological sort of the nodes in a DAG is 
a list of all the nodes, such that if (u, v) is 
an edge, then u comes before v in the list
Every DAG has a
topological sort,
often several
012345678 is a
topological sort of
this DAG, but
015342678 isn't.



Example: topological sort

An example: if nodes are tasks, and an 
edge (u, v) means “task u must be done 
before task v”, then:
If the graph is a DAG
it means there
are no impossible
dependencies
between tasks
A topological sort gives
a valid order to do the tasks in



Topological sort

We can use a depth-first search to 
topologically sort the graph:
● Suppose that we do a DFS but using the 

alternative version where we visit each node only 
after visiting the adjacent nodes

● If (u, v) is an edge, we will then visit u after we 
visit v – we will only visit a node once we've 
visited all nodes that come after it

● So if we print each node as we visit it, we will 
almost get a topological sort but in reverse order

● So, by printing the nodes in the reverse order we 
visit them, we will topologically sort the graph!



Summary

Graphs:
● many varieties – directed, undirected, weighted, unweighted
● all are variations on the same basic theme
● graphs can be cyclic or acyclic (directed acyclic graphs very 

common)
● paths, cycles, connected components

Implementing them:
● adjacency lists – good for sparse graphs
● adjacency matrix – good for dense graphs

Some basic algorithms:
● breadth-first and depth-first search
● unweighted shortest path using BFS
● topological sort using DFS
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