Lab deadlines

Some groups have had trouble making
the lab 2 final deadline, so I've moved the
deadlines a bit:

« For lab 2, the final deadline is this Friday

» For lab 3, the deadline is next Friday, the 23
(there's no separate first and final deadline)

If you miss the deadline, there will be a
chance after the end of the course to pass
the lab by showing me it in person



Note on copying

[t hardly needs to be said, but...

 The labs are part of the examination of the
course, and as such the work your group submits
must be the work of your group alone

e Although I don't mind you discussing ideas
between groups, you must not copy from
another group!

o GU considers this cheating, and both the person
who copies a solution, and the person who lets
their solution be copied, can get in serious trouble



Graphs (chapter 13)




Terminology

A graph is a data structure consisting of
nodes (or vertices) and edges

e An edge is a connection between two nodes

; ®

Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)
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Seven bridges of Konigsberg

http:// en.wikipedia.org/ wiki/Seven_Bridges_of_Konigsberg
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http://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg

Graphs

Graphs are used all over the place:

e communications networks
» many of the algorithms behind the internet
e maps, transport networks, route finding

« finding good ways to lay out components in an
integrated circuit

o efc.

Anywhere where you have things, and
relationships between things!



More graphs

Graphs can be either directed or
undirected

 In an undirected graph, an edge simply connects
two nodes

e In a directed graph, one node of each edge is the
source and the other is the target (we draw an
arrow from the source to the target)

A tree is a special case of a directed graph

« Edge connecting parent to children

e Butin a tree, each node can only have one parent
— in a directed graph, it could have several



Drawing graphs

We represent nodes as points, and edges
as lines — in a directed graph, edges are
arrows:

A @ al e
n &—0© (f—E—©)
V={AB,C,D,E} V={AB,C,D,E}

E=1(4A, B), (A4, D), E =1(A, B), (B, A), (B, E), (D, A),
(G, E), (D, E)} (E,A), (&, C), (E, D)}




Drawing graphs

The layout of the graph is completely
irrelevant: only the nodes and edges
matter

V=1{0,1,2%,3,4,5,6}
k=10, 1),(0,2), (0, 5), (0, 6), (8, 5), (8, 4), (4, 5), (4, 6)}



Weighted graphs

In a weighted graph, each edge has a
weight associated with it:

Ann Arbor
0 Detroit

Philadelphia

Indianapolis Columbus

A graph can be directed, weighted,
neither or both



Paths and cycles

Two vertices are adjacent if there is an

edge between them: Cleveland is

adjacent to
0 Detroit Plttsburgh

Ann Arbor

120 Cleveland A130 Pittsburgh

Chicago

 Philadelphia

~ Philadelphia is
Indianapolis Columbus adjacent to
Pittsburgh




Paths and cycles

Two vertices are adjacent if there is an

edge between them: " Cleveland is
Ann Arbor not adjacent to
0 Detroit PhlladEIPhla

120 Cleveland 130 Pittsburgl"

Chicago

Philadelphia

Indianapolis Columbus




Paths and cycles

In a directed graph, the target of an edge
is adjacent to the source, not the other
way around:

Ais adjacent to D,
but D is not
~ adjacentto A




Paths and cycles

A path is a sequence of vertices where
each vertex is adjacent to its predecessor:

Ann Arbor
(7 .
0 Detroit
40 1 60 120 Cleveland 130 Pittsburgh
260 ¥ y N
Toledo yd 20
Chicago @&
148 55 50
gkort
80 . .
ayne Philadelphia
180 20
180

Indianapolis Columbus



Paths and cycles

In a simple path, no node or edge appears twice,
except that the first and last node can be the same

Ann Arbor
l N
0 Detroit
40 1 60 120 Cleveland 130 Pittsburgh
260 V A
Toledo yd 20
Chicago @&
148 55 50 \
gkort
80 . .
ayne ,, Phlladelphla\”
180 20
180 ‘ This path is

Indianapolis Columbus a Simple path




Paths and cycles

In a simple path, no node or edge appears twice,
except that the first and last node can be the same

Ann Arbor
(7 .
0 Detroit
40 1 60 120 Cleveland 130 Pittsburgh
260 ¥ y N
Toledo yd

20

Chicago @&
55 50

(B

80 Philadelphia

180 / This path is
Indianapolis Columbus not a Simple Path




Paths and cycles

A cycle is a simple path where the first and last

nodes are the same — a graph that contains a cycle is

called cyclic, otherwise it is called acyclic
Ann Arbor

0 Detroit
60 120 Cleveland 130 Pittsburgh

320
Chicago

Philadelphia

“This path is a cycle,\
and a simple path;
the graph is cyclic

Indianapolis Columbus




Connectedness

A graph is called connected if there is a
path from every node to every other node

This graph is
connected




Connectedness

A graph is called connected if there is a
path from every node to every other node

This graph is

not connected




Connectedness

[f a graph is unconnected, it still consists
of connected components

@) %)

4,5}isa - {6,7,8,9}isa
connected connected
component component




Connectedness

A single unconnected node is a connected
component in itself

{4} is a 7 @

connected
component




Implementing a graph

Alternative 1: adjacency lists
Keep a list of all nodes in the graph

o With each node, associate a list of all the nodes
adjacent to that nodes

Alternative 2: adjacency matrix

Keep a 2-dimensional array, with one
entry for each pair of nodes

o ali][j] = true if there is an edge between node i
and node ]



Adjacency list — directed graph

Noge

—

next = null
value = 3

Node

next = null
value = 4

Node
next = [ ——
value = 3
Node
next = null
Node[] value = 4
] — Node
[1] = / next = —4
[2] E— value = §
[3] Specc:
[5‘] T —) \ Node

next = null
value = 1

gece

null
3

next
value

Node

next = null
value = §




Adjacency list — undirected graph

nex
1 1 alu 4
Node [ ] Node S-. Node S’ N S.
el next = [ = =l = next = [ ——
[@] — value = @ 1 = 4 value = 2
[1] —
Eg% ._‘_-_Hl_'_-' MNode N
[4] _____HH'"“‘-‘. next = [ —— t 1
\ val 1 1 3

- \ —— S" e S- - .mm
Each edge (a, b) e - ] n
appears twice - N —

once in a's list value 2
and once in b's list

\ /
. Y

S




Adjacency matrix

We use a 2-dimensional array

For an unweighted graph, we use an array
of booleans

o ali][j] = true if there is an edge between node i
and node j

» For an undirected graph, ali]lj] = alj]li]

For a weighted graph, the array contains
weights instead of booleans

» We can e.g. use an infinite value if there is no
edge between a pair of nodes



Adjacency matrix, weighted graph

Column

(o] | [11{ [2]| (3] [4]][5]
[0] 1.0 0.9
[1] 1.0

&[] 0.3/ 1.0
(3] 0.6
(4] 1.0
[5] 0.5
Column

(e]| (11| [21|[3]][4]

[0] 1.0 0.9

[1]11.0 1.010.83 10.6
(2] 1.0 0.5
(3] 0.3(0.5 1.0
[4]{0.9 |10.6 1.0

Row




Which representation is best?

[t depends on the graph's density

o The quantity |E| / | V|2 where | V| is the
number of nodes and |E | the number of edges
o In a dense graph, |E| is close to |V |2

o In a sparse graph, |E| is much lower than |V |2
Most graphs are sparse!

o If each node has a bounded number of edges,
then | E| will be proportional to | V|



Which representation is best?

Many graph algorithms have the form:

for each node u in the graph
for each node v adjacent to u
do something with edge (u, v)

With an adjacency list, we can just iterate
through all nodes and edges in the graph

o This gives a complexity of O(|V| + |E|)

With an adjacency matrix, we must try each
pair (u, v) of nodes to check if there is an edge
o This gives a complexity of O(|V|?)

Winner: adjacency lists for sparse graphs,
unclear for dense graphs



Which representation is best?

So:

o if the graph is sparse adjacency lists are better
(common)

o if the graph is dense an adjacency matrix are better
(rare)

What about memory consumption?

 An adjacency matrix needs space for | V|2 values, so
takes O(|V|2) memory - but with a low constant
factor because each value is just a double

 An adjacency list needs O(|V| + |E|) space — but with
a higher constant factor because of the node objects

e Again depends on how sparse the graph is



Graph traversals

Many graph algorithms involve visiting
each node in the graph in some
systematic order

o Just like with trees, there are several orders you
might want

The two commonest methods are:

e breadth-first search
o depth-first search



Breadth-first search

A breadth-first search (BES) visits the
nodes in the following order:

e First the start node

o Then all nodes that are adjacent to the start node

e Then all nodes that are adjacent to those

e and so on

We end up visiting all nodes that are k
edges away from the start node, before
visiting any nodes that are k+1 edges
away



Implementing breadth-first search

We maintain a queue of nodes that we are
golng to visit next

o Initially, the queue contains the start node

We repeat the following process:

 Remove a node from the queue
e Visitit
» Find all nodes adjacent to the visited node and

add them to the queue, unless they have been
visited or added to the queue already



Example of a breadth-first search

Queue:

0

Visit order:

Initially,
queue contains
start node

unvisited queued @ visited




Example of a breadth-first search

Queue:

Visit order:

0

Step 1:
remove node
from queue
and visit it

unvisited queued @ visited



Example of a breadth-first search

Queue:
3 1

Visit order:

0

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

unvisited queued @ visited




Example of a breadth-first search

Queue:
1

Visit order:
0 3

Step 1:
remove node
from queue
and visit it

unvisited queued @ visited




Example of abre  iited s 3rch

we don't add
it to the queue |

Queue:
1 2

Visit order:
0 3

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

unvisited queued @ visited




Example of a breadth-first search

Queue:
2

Visit order:
0 3 1

Step 1: |
remove node Q

from queue
unvisited

and visit it

8
queued @ visited



Example of a bre 2isalready arch

in the queue, so
we don't add

Queue: ~ ltagain

2 4 6 7

Visit order:
0 3 1

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

unvisited queued @ visited




Example of a breadth-first search

Queue:
4 6 7

Visit order:
9 312

Step 1:
remove node
from queue
and visit it

unvisited

8
queued @ visited



Example of a breadth-first search

Queue: 5 )
4 6 79 8

Visit order:
9 312

Step 2: |
add adjacent nodes g 6

to queue
(only unvisited ones)|

unvisited queued @ visited




Example of a breadth-first search

Queue: 5)
6 7 9 8

Visit order:
9 312 4

Step 1:

remove node g G

from queue

and visit it |
unvisited queued @ visited




Example of a breadth-first search

Queue: 5
6 7 9 8 5

Visit order:
9 312 4

Step 2: |
add adjacent nodes g 6

to queue
(only unvisited ones)

unvisited queued @ visited




Example of a breadth-first search

Queue: 5
/7 9 85

Visit order:
9 312 4
6

Step 1:

remove node g G
from queue
unvisited queued @ visited

and visit it




Example of a breadth-first search

Queue: ch;'[ adjacercitct1

Visit order:
9 312 4
6

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

unvisited queued @ visited




Example of a breadth-first search

Queue:
/7 9 85

Visit orde.

0312 "

Step2:
add adjacent nodes
to queue

2

®

Skip to the end...

N\
| U \

| <>
| \

| // N\

| A N/

| / 4

| /

| / /

| /

|/

|/

(only unvisited ones)

unvisited queued 6 visited



Example of a breadth-first search

Queue:

Visit order:

0 3124
6 7 9 8 5

We reach step 1, but
the queue is empty,
and we're finished!

/ unvisited queued @ visited




Breadth-first search tree

While doing the BFS, we can
record which node we came
from when visiting each
node in the graph

(we do this when adding
a node to the queue)

By doing this we can
build a tree with the start node at the top
(the breadth-first search tree)

Starting at a node in the tree, and following it up
to the root, gives us the shortest path from each
node to the start node



Example: unweighted shortest path

We can represent a maze as a graph — nodes are
junctions, edges are paths.

How can we find a path from the entrance to the exit?

©)
1k (7Y

S
®
)
@G

-




Example: unweighted shortest path

A breadth-first search tree starting from the entrance
gives us a path to any node (including the exit)

This path minimises number of junctions — each edge has
the same cost, we call this the unweighted shortest path




Depth-first search

Depth-first search is an alternative search
order that's easier to implement
To do a DFS starting from a node:

e visit the node

o recursively DES all adjacent nodes (skipping any
already-visited nodes)

Much simpler!



Depth-first search, alternative order

A variation of DES, where we visit each
node after visiting the adjacent nodes.

To do a DFS starting from a node:

e mark the node as visited

o recursively DES all adjacent nodes (skipping any
already-visited nodes)

e visit the node itself

(Wikipedia calls the order of nodes a

postordering, compared to a preordering
for the normal DES)



BFS vs DFS

BES visits the nodes in a
“fair” order: the search area
widens gradually

E.g. on a tree: first visit
the root, then the root's
children, then grandchildren, and so on.

DES will explore a whole branch of the tree
before backtracking and trying a different
branch - the order is much more unpredictable
which makes it unsuitable for some algorithms
(e.g. on the tree to the right, you may explore 3
directly after O, or you may explore it last)



Implementing depth-first search

We maintain a stac

going to visit next We can implement DFS just

e Initially, the stack cc by taking the BES algorithm
and using a stack instead of

We repeat the follo 2 queue!

e Remove a node from
. Visit it f %
» Find all nodes adjacent to the visited node and

add them to the stack, unless they have been
visited or added to the stack already




Example of a depth-first search

Stack:
0

Visit order:

Initially,
stack contains
start node

unvisited queued @ visited




Example of a depth-first search

Stack:

Visit order:

0

Step 1:
remove node
from stack
and visit it

unvisited queued @ visited



Example of a depth-first search

Stack:
31

Visit order:

0

Step 2:

add adjacent nodes
to stack

(only unvisited ones)

unvisited queued @ visited




Example of a depth-first search

Stack:
3

Visit order:
0 1

Step 1:
remove node
from stack
and visit it

unvisited queued @ visited




we don't add
it to the stack |

Stack:
327 406

Visit order:
0 1

Step 2:

add adjacent nodes
to stack

(only unvisited ones)

unvisited queued @ visited




Example of a depth-first search

Stack:
327 4

Visit order:
16

Step 1:
remove node
from stack
and visit it

unvisited queued @ visited




Example of a depth-first search

Stack:
327 4

Visit order:
16

Step 2:

add adjacent nodes
to stack

(only unvisited ones)

unvisited queued @ visited




Example of a depth-first search

Stack:
327

Visit order:
O 16 4

Step 1:
remove node
from stack
and visit it

unvisited queued @ visited




Example of a depth-first search

Stack:
32765

Visit order:
O 16 4

Step 2:

add adjacent nodes
to stack

(only unvisited ones)

unvisited queued @ visited




Example of a depth-first search

Stack:
327

Visit order:
01645 (3

Step 1: |
remove node Q

from stack
unvisited

and visit it

8
queued @ visited



Example of a depth-first search

Stack:
327

Visit order:
01645 (3

2,
Step 2:

add adjacent nodes
to stack 9 6

(only unvisited ones)

unvisited queued @ visited




Example of a depth-first search

Stack:
32

Visit order:
01645 (3

/
S

Step 1:
remove node Q

from stack
unvisited

and visit it

8
queued @ visited



Example of a depth-first search

Stack:
32

Visit order:
01645 (3

/ L

Step 2:

add adjacent nodes
to stack 9 6

(only unvisited ones)

unvisited queued @ visited




Example of a depth-first search

Stack:
3

Visit order:

91645 (3
7 2

Step 1:

remove node Q 6
from stack
unvisited queued @ visited

and visit it




Example of a depth-first search

Stack: /‘
3 9 8 -

Visit orde
0164°

~ Step2 x
add adjacent nodes @)

to stack
(only unvisited ones)

: unvisited queued @ visited

Skip to the end...




Example of a depth-first search

Stack:

Visit order:
@16 45
7 2 8 9 3

unvisited queued @ visited



Complexity of BFS and DFS

We only look at each edge once (twice for
undirected graphs)

e So we look at maximum |E| edges

e (2 x |E| for undirected graphs)

Complexity is therefore O(|E|) - for both
breadth-first and depth-first search



Directed acyclic graphs

Here is a directed acyclic graph (DAG)

A DAG is a Conennus D

directed graph
without cycles =
That means:

once you

follow an

edge there is
no way back to the

source node — we can say that one node is
after another in the graph



Example: topological sort

A topological sort of the nodes in a DAG is
a list of all the nodes, such that if (u, v) is
an edge, then u comes before v in the list

Every DAG has a

topological sort,
often several

012345678 is a
topological sort of
this DAG, but
015342678 isn't.




Example: topological sort

An example: if nodes are tasks, and an
edge (u, v) means “task u must be done
before task v”, then:

[f the graph is a DAG
it means there
are no impossible
dependencies
between tasks

A topological sort gives
a valid order to do the tasks in



Topological sort

We can use a depth-first search to
topologically sort the graph:

» Suppose that we do a DFS but using the
alternative version where we visit each node only
after visiting the adjacent nodes

o If (u, v) is an edge, we will then visit u after we
visit v — we will only visit a node once we've
visited all nodes that come after it

» So if we print each node as we visit it, we will
almost get a topological sort but in reverse order

e So, by printing the nodes in the reverse order we
visit them, we will topologically sort the graph!



Summary

Graphs:

e many varieties — directed, undirected, weighted, unweighted
e all are variations on the same basic theme

o graphs can be cyclic or acyclic (directed acyclic graphs very
common)

e paths, cycles, connected components
Implementing them:

e adjacency lists — good for sparse graphs

e adjacency matrix — good for dense graphs
Some basic algorithms:

e breadth-first and depth-first search
« unweighted shortest path using BES
e topological sort using DFES
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