Lab deadlines

Some groups have had trouble making the lab 2 final deadline, so I've moved the deadlines a bit:

- For lab 2, the final deadline is *this Friday*
- For lab 3, the deadline is next Friday, the 23rd (there's no separate first and final deadline)

If you miss the deadline, there will be a chance after the end of the course to pass the lab by showing me it in person

Note on copying

It hardly needs to be said, but...

- The labs are part of the examination of the course, and as such the work your group submits must be the work of your group alone
- Although I don't mind you discussing ideas between groups, you **must not** copy from another group!
- GU considers this cheating, and both the person who copies a solution, *and the person who lets their solution be copied*, can get in serious trouble

Graphs (chapter 13)

Terminology

A graph is a data structure consisting of *nodes* (or *vertices*) and *edges*

• An edge is a connection between two nodes

Nodes: A, B, C, D, E Edges: (A, B), (A, D), (D, E), (E, C)

Seven bridges of Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

Graphs

Graphs are used all over the place:

- communications networks
- many of the algorithms behind the internet
- maps, transport networks, route finding
- finding good ways to lay out components in an integrated circuit
- etc.

Anywhere where you have things, and relationships between things!

More graphs

Graphs can be either *directed* or *undirected*

- In an undirected graph, an edge simply connects two nodes
- In a directed graph, one node of each edge is the source and the other is the target (we draw an arrow from the source to the target)
- A tree is a special case of a directed graph
 - Edge connecting parent to children
 - But in a tree, each node can only have one parent

 in a directed graph, it could have several

Drawing graphs

We represent nodes as points, and edges as lines – in a directed graph, edges are arrows:

 $V = \{A, B, C, D, E\}$ E = {(A, B), (A, D), (C, E), (D, E)}

 $V = \{A, B, C, D, E\}$ E = {(A, B), (B, A), (B, E), (D, A), (E, A), (E, C), (E, D)}

Drawing graphs

The layout of the graph is **completely irrelevant**: only the nodes and edges matter

 $V = \{0, 1, 2, 3, 4, 5, 6\}$ E = {(0, 1), (0, 2), (0, 5), (0, 6), (3, 5), (3, 4), (4, 5), (4, 6)}

Weighted graphs

In a *weighted graph*, each edge has a *weight* associated with it:

A graph can be directed, weighted, neither or both

Two vertices are *adjacent* if there is an edge between them: Cleveland is

Two vertices are *adjacent* if there is an edge between them: Cleveland is

In a directed graph, the *target* of an edge is adjacent to the *source*, not the other way around:

A is adjacent to D, but D is **not** adjacent to A

A *path* is a sequence of vertices where each vertex is adjacent to its predecessor:

In a *simple path*, no node or edge appears twice, except that the first and last node can be the same

In a *simple path*, no node or edge appears twice, except that the first and last node can be the same

A *cycle* is a simple path where the first and last nodes are the same – a graph that contains a cycle is called *cyclic*, otherwise it is called *acyclic*

A graph is called *connected* if there is a path from every node to every other node

A graph is called *connected* if there is a path from every node to every other node

If a graph is unconnected, it still consists of *connected components*

A single unconnected node is a connected component in itself

Implementing a graph

Alternative 1: *adjacency lists*

Keep a list of all nodes in the graph

• With each node, associate a list of all the nodes adjacent to that nodes

Alternative 2: *adjacency matrix*

Keep a 2-dimensional array, with one entry for each pair of nodes

 a[i][j] = true if there is an edge between node i and node j

Adjacency list – directed graph

Adjacency list – undirected graph

Adjacency matrix

We use a 2-dimensional array

For an unweighted graph, we use an array of booleans

- a[i][j] = true if there is an edge between node i and node j
- For an undirected graph, a[i][j] = a[j][i]

For a weighted graph, the array contains weights instead of booleans

• We can e.g. use an infinite value if there is no edge between a pair of nodes

Adjacency matrix, weighted graph

			C	Colun	n		
		[0]	[1]	[2]	[3]	[4]	[5]
Kow	[0]		1.0		0.9		
	[1]					1.0	
	[2]					0.3	1.0
	[3]		0.6				
	[4]				1.0		
	[5]						0.5

	Column										
Row		[0]	[1]	[2]	[3]	[4]					
	[0]		1.0			0.9					
	[1]	1.0		1.0	0.3	0.6					
	[2]		1.0		0.5						
	[3]		0.3	0.5		1.0					
	[4]	0.9	0.6		1.0						

Which representation is best?

It depends on the graph's *density*

- The quantity |E| / |V|², where |V| is the number of nodes and |E| the number of edges
- In a *dense* graph, |E| is close to $|V|^2$
- In a sparse graph, |E| is much lower than $|V|^2$ Most graphs are sparse!
 - If each node has a bounded number of edges, then |E| will be proportional to |V|

Which representation is best?

Many graph algorithms have the form:

for each node u in the graph for each node v adjacent to u do something with edge (u, v)

With an adjacency list, we can just iterate through all nodes and edges in the graph

• This gives a complexity of O(|V| + |E|)

With an adjacency matrix, we must try each pair (u, v) of nodes to check if there is an edge

• This gives a complexity of O($|V|^2$)

Winner: adjacency lists for sparse graphs, unclear for dense graphs

Which representation is best?

So:

- if the graph is sparse adjacency lists are better (common)
- if the graph is dense an adjacency matrix are better (rare)

What about memory consumption?

- An adjacency matrix needs space for |V|² values, so takes O(|V|²) memory – but with a low constant factor because each value is just a double
- An adjacency list needs O(|V| + |E|) space but with a higher constant factor because of the node objects
- Again depends on how sparse the graph is

Graph traversals

Many graph algorithms involve visiting each node in the graph in some systematic order

• Just like with trees, there are several orders you might want

The two commonest methods are:

- breadth-first search
- depth-first search

Breadth-first search

A breadth-first search (BFS) visits the nodes in the following order:

- First the start node
- Then all nodes that are adjacent to the start node
- Then all nodes that are adjacent to those
- and so on

We end up visiting all nodes that are k edges away from the start node, before visiting any nodes that are k+1 edges away

Implementing breadth-first search

We maintain a *queue* of nodes that we are going to visit next

• Initially, the queue contains the start node

We repeat the following process:

- Remove a node from the queue
- Visit it
- Find all nodes adjacent to the visited node and add them to the queue, *unless* they have been visited or added to the queue already

Example of a breadth-first search

Example of a breadth-first search

5

6

visited

Queue: 4 6 7 9 8 0 4 Visit order: 3 0 3 1 2 2 Step 2: add adjacent nodes 9 8 to queue (only unvisited ones) unvisited queued 0 0

Step 1: remove node from queue and visit it

Queue: 5 7 9 8 5 4 0 Visit order: 3 0 3 1 2 4 6 6 2 Step 1: remove node 9 8 from queue and visit it unvisited queued visited 0 0

Step 2: add adjacent nodes to queue (only unvisited ones)

Breadth-first search tree

While doing the BFS, we can record *which node we came from* when visiting each node in the graph

(we do this when adding a node to the queue)

By doing this we can build a tree with the start node at the top (the *breadth-first search tree*)

Starting at a node in the tree, and following it up to the root, gives us the *shortest path* from each node to the start node

8

Example: unweighted shortest path

We can represent a maze as a graph – nodes are junctions, edges are paths.

How can we find a path from the entrance to the exit?

Example: unweighted shortest path

A breadth-first search tree starting from the entrance gives us a path to any node (including the exit)

This path minimises *number of junctions* – each edge has the same cost, we call this the *unweighted* shortest path

Depth-first search

Depth-first search is an alternative search order that's easier to implement

To do a DFS starting from a node:

- visit the node
- recursively DFS all adjacent nodes (skipping any already-visited nodes)

Much simpler!

Depth-first search, alternative order

A variation of DFS, where we visit each node *after* visiting the adjacent nodes. To do a DFS starting from a node:

- mark the node as visited
- recursively DFS all adjacent nodes (skipping any already-visited nodes)
- visit the node itself

(Wikipedia calls the order of nodes a *postordering*, compared to a *preordering* for the normal DFS)

BFS vs DFS

BFS visits the nodes in a "fair" order: the search area widens gradually

E.g. on a tree: first visit the root, then the root's

children, then grandchildren, and so on.

DFS will explore a whole branch of the tree before backtracking and trying a different branch – the order is much more unpredictable which makes it unsuitable for some algorithms (e.g. on the tree to the right, you may explore 3 directly after 0, or you may explore it last)

8

Implementing **depth**-first search

We maintain a **stac** going to visit next

- Initially, the stack cc
 We repeat the follo
 - Remove a node from
 - Visit it

We can implement DFS just by taking the BFS algorithm and using a stack instead of a queue!

 Find all nodes adjacent to the visited node and add them to the stack, unless they have been visited or added to the stack already

Complexity of BFS and DFS

We only look at each edge once (twice for undirected graphs)

- So we look at maximum |E| edges
- $(2 \times |E| \text{ for undirected graphs})$

Complexity is therefore O(|E|) - for both breadth-first and depth-first search

Directed acyclic graphs

Here is a directed acyclic graph (DAG)

Example: topological sort

A *topological sort* of the nodes in a DAG is a list of all the nodes, such that *if* (*u*, *v*) *is an edge, then u comes before v in the list*

Every DAG has a topological sort, often several

012345678 is a topological sort of this DAG, but 015342678 isn't.

Example: topological sort

An example: if nodes are tasks, and an edge (u, v) means "task u must be done before task v", then:

0

6

4

If the graph is a DAG it means there are no impossible dependencies between tasks

A topological sort gives in a valid order to do the tasks in

Topological sort

We can use a depth-first search to topologically sort the graph:

- Suppose that we do a DFS but using the alternative version where we visit each node only after visiting the adjacent nodes
- If (u, v) is an edge, we will then visit u *after* we visit v we will only visit a node once we've visited all nodes that come after it
- So if we print each node as we visit it, we will almost get a topological sort but in reverse order
- So, by printing the nodes in the reverse order we visit them, we will topologically sort the graph!

Summary

Graphs:

- many varieties directed, undirected, weighted, unweighted
- all are variations on the same basic theme
- graphs can be cyclic or acyclic (*directed acyclic graphs* very common)
- paths, cycles, connected components

Implementing them:

- adjacency lists good for sparse graphs
- adjacency matrix good for dense graphs

Some basic algorithms:

- breadth-first and depth-first search
- unweighted shortest path using BFS
- topological sort using DFS