Lab deadlines

Some groups have had trouble making the lab 2 final deadline, so I've moved the deadlines a bit:

- For lab 2, the final deadline is this Friday
- For lab 3, the deadline is next Friday, the 23 rd (there's no separate first and final deadline)
If you miss the deadline, there will be a chance after the end of the course to pass the lab by showing me it in person

Note on copying

It hardly needs to be said, but...

- The labs are part of the examination of the course, and as such the work your group submits must be the work of your group alone
- Although I don't mind you discussing ideas between groups, you must not copy from another group!
- GU considers this cheating, and both the person who copies a solution, and the person who lets their solution be copied, can get in serious trouble

Graphs (chapter 13)

Terminology

A graph is a data structure consisting of nodes (or vertices) and edges

- An edge is a connection between two nodes

Nodes: A, B, C, D, E
Edges: (A, B), (A, D), (D, E), (E, C)

Seven bridges of Königsberg

http://en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

Graphs

Graphs are used all over the place:

- communications networks
- many of the algorithms behind the internet
- maps, transport networks, route finding
- finding good ways to lay out components in an integrated circuit
- etc.

Anywhere where you have things, and relationships between things!

More graphs

Graphs can be either directed or undirected

- In an undirected graph, an edge simply connects two nodes
- In a directed graph, one node of each edge is the source and the other is the target (we draw an arrow from the source to the target)
A tree is a special case of a directed graph
- Edge connecting parent to children
- But in a tree, each node can only have one parent - in a directed graph, it could have several

Drawing graphs

We represent nodes as points, and edges as lines - in a directed graph, edges are arrows:

$$
\begin{aligned}
& V=\{A, B, C, D, E\} \\
& E=\{(A, B),(A, D), \\
&(C, E),(D, E)\}
\end{aligned}
$$

$$
\begin{aligned}
V= & \{A, B, C, D, E\} \\
E= & \{(A, B),(B, A),(B, E),(D, A), \\
& (E, A),(E, C),(E, D)\}
\end{aligned}
$$

Drawing graphs

The layout of the graph is completely irrelevant: only the nodes and edges matter

$\mathrm{V}=\{0,1,2,3,4,5,6\}$
$E=\{(0,1),(0,2),(0,5),(0,6),(3,5),(3,4),(4,5),(4,6)\}$

Weighted graphs

In a weighted graph, each edge has a weight associated with it:

A graph can be directed, weighted, neither or both

Paths and cycles

Two vertices are adjacent if there is an

 edge between them:Cleveland is adjacent to

Paths and cycles

Two vertices are adjacent if there is an

 edge between them:

Paths and cycles

In a directed graph, the target of an edge is adjacent to the source, not the other way around:

A is adjacent to D, but D is not adjacent to A

Paths and cycles

A path is a sequence of vertices where each vertex is adjacent to its predecessor:

Paths and cycles

In a simple path, no node or edge appears twice, except that the first and last node can be the same

Paths and cycles

In a simple path, no node or edge appears twice, except that the first and last node can be the same

Paths and cycles

A cycle is a simple path where the first and last nodes are the same - a graph that contains a cycle is called cyclic, otherwise it is called acyclic

Connectedness

A graph is called connected if there is a path from every node to every other node

This graph is connected

Connectedness

A graph is called connected if there is a path from every node to every other node

This graph is not connected

Connectedness

If a graph is unconnected, it still consists of connected components

$\{4,5\}$ is a connected component

Connectedness

A single unconnected node is a connected component in itself
$\{4\}$ is a connected component

Implementing a graph

Alternative 1: adjacency lists
Keep a list of all nodes in the graph

- With each node, associate a list of all the nodes adjacent to that nodes
Alternative 2: adjacency matrix
Keep a 2-dimensional array, with one entry for each pair of nodes
- $a[i][j]=$ true if there is an edge between node i and node j

Adjacency list - directed graph

Adjacency list - undirected graph

 and once in b's list

Adjacency matrix

We use a 2-dimensional array
For an unweighted graph, we use an array of booleans

- $a[i][j]=$ true if there is an edge between node i and node j
- For an undirected graph, $\mathrm{a}[\mathrm{i}][\mathrm{j}]=\mathrm{a}[\mathrm{j}][\mathrm{i}]$

For a weighted graph, the array contains weights instead of booleans

- We can e.g. use an infinite value if there is no edge between a pair of nodes

Adjacency matrix, weighted graph

	$[0]$	$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
$[0]$		1.0		0.9		
$[1]$					1.0	
$[2]$					0.3	1.0
$[3]$		0.6				
$[4]$				1.0		
$[5]$						0.5

Column

	$[0]$	$[1]$	$[2]$	$[3]$
$[4]$				
$[0]$		1.0		
0.9				
$[1]$	1.0		1.0	0.3
\approx	0.6			
$[2]$		1.0		0.5
$[3]$		0.3	0.5	
$[4]$	0.9	0.6		1.0

Which representation is best?

It depends on the graph's density

- The quantity $|E| /|V|^{2}$, where $|V|$ is the number of nodes and $|\mathrm{E}|$ the number of edges
- In a dense graph, $|\mathrm{E}|$ is close to $|\mathrm{V}|^{2}$
- In a sparse graph, $|\mathrm{E}|$ is much lower than $|\mathrm{V}|^{2}$

Most graphs are sparse!

- If each node has a bounded number of edges, then $|E|$ will be proportional to $|\mathrm{V}|$

Which representation is best?

Many graph algorithms have the form:
for each node u in the graph
for each node v adjacent to u do something with edge (u, v)
With an adjacency list, we can just iterate through all nodes and edges in the graph

- This gives a complexity of $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

With an adjacency matrix, we must try each pair (u, v) of nodes to check if there is an edge

- This gives a complexity of $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$

Winner: adjacency lists for sparse graphs, unclear for dense graphs

Which representation is best?

So:

- if the graph is sparse adjacency lists are better (common)
- if the graph is dense an adjacency matrix are better (rare)

What about memory consumption?

- An adjacency matrix needs space for $|\mathrm{V}|^{2}$ values, so takes $\mathrm{O}\left(|\mathrm{V}|^{2}\right)$ memory - but with a low constant factor because each value is just a double
- An adjacency list needs $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ space - but with a higher constant factor because of the node objects
- Again depends on how sparse the graph is

Graph traversals

Many graph algorithms involve visiting each node in the graph in some systematic order

- Just like with trees, there are several orders you might want
The two commonest methods are:
- breadth-first search
- depth-first search

Breadth-first search

A breadth-first search (BFS) visits the nodes in the following order:

- First the start node
- Then all nodes that are adjacent to the start node
- Then all nodes that are adjacent to those
- and so on

We end up visiting all nodes that are k edges away from the start node, before visiting any nodes that are $k+1$ edges away

Implementing breadth-first search

We maintain a queue of nodes that we are going to visit next

- Initially, the queue contains the start node We repeat the following process:
- Remove a node from the queue
- Visit it
- Find all nodes adjacent to the visited node and add them to the queue, unless they have been visited or added to the queue already

Example of a breadth-first search

Queue:
0
Visit order:

Initially, queue contains start node

Example of a breadth-first search

Queue:

Visit order:
0

Step 1:
remove node from queue and visit it

Example of a breadth-first search

Queue:

31 Visit order: 0

(only unvisited ones)

Example of a breadth-first search

Queue:

1 Visit order: 03

Step 1:
remove node from queue and visit it

Example of a bre

0 is already visited, so
 arch we don't add it to the queue

Queue:
 12

 Visit order: 03Step 2:
add adjacent nodes
to queue
(only unvisited ones)

Example of a breadth-first search

Queue:

2 Visit order: 031

Step 1:
remove node from queue and visit it

Example of a bre

2 is already \exists arch in the queue, so we don't add
Queue:
2467 Visit order: 031 it again 5

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

Example of a breadth-first search

Queue:
467 Visit order: 0312

Step 1:
remove node from queue and visit it

Example of a breadth-first search

Queue:
46798 Visit order: 0312

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

Example of a breadth-first search

Queue:
6798 Visit order: 03124

Step 1:
remove node from queue and visit it

Example of a breadth-first search

Queue:
67985 Visit order: 03124

Step 2:
add adjacent nodes
to queue
(only unvisited ones)

Example of a breadth-first search

Queue:
7985 Visit order:

6
Step 1:
remove node from queue and visit it

Example of a breadth-first search

Queue:
7985
Visit order:
03124
6
Step 2:
add adjacent nodes
to queue
(only unvisited ones)

Example of a breadth-first search

Queue:

7985

Visit ord.
 0317 Skip to the end...
 6
 Skip to the end...

Step 2: add adjacent nodes
to queue
(only unvisited ones)

Example of a breadth-first search

Queue:

Visit order:

03124

67985

We reach step 1 , but the queue is empty, and we're finished!

Breadth-first search tree

While doing the BFS, we can record which node we came from when visiting each node in the graph
(we do this when adding a node to the queue)

By doing this we can build a tree with the start node at the top (the breadth-first search tree)
Starting at a node in the tree, and following it up to the root, gives us the shortest path from each node to the start node

Example: unweighted shortest path

We can represent a maze as a graph - nodes are junctions, edges are paths.
How can we find a path from the entrance to the exit?

Example: unweighted shortest path

A breadth-first search tree starting from the entrance gives us a path to any node (including the exit)
This path minimises number of junctions - each edge has the same cost, we call this the unweighted shortest path

Depth-first search

Depth-first search is an alternative search order that's easier to implement To do a DFS starting from a node:

- visit the node
- recursively DFS all adjacent nodes (skipping any already-visited nodes)
Much simpler!

Depth-first search, alternative order

A variation of DFS, where we visit each node after visiting the adjacent nodes.
To do a DFS starting from a node:

- mark the node as visited
- recursively DFS all adjacent nodes (skipping any already-visited nodes)
- visit the node itself
(Wikipedia calls the order of nodes a postordering, compared to a preordering for the normal DFS)

BFS vs DFS

BFS visits the nodes in a "fair" order: the search area widens gradually
E.g. on a tree: first visit the root, then the root's
 children, then grandchildren, and so on.
DFS will explore a whole branch of the tree before backtracking and trying a different branch - the order is much more unpredictable which makes it unsuitable for some algorithms (e.g. on the tree to the right, you may explore 3 directly after 0 , or you may explore it last)

Implementing depth-first search

We maintain a stac going to visit next

- Initially, the stack cc

We repeat the follo

We can implement DFS just by taking the BFS algorithm and using a stack instead of a queue!

- Remove a node from
- Visit it
- Find all nodes adjacent to the visited node and add them to the stack, unless they have been visited or added to the stack already

Example of a depth-first search

Stack:
 0 Visit order:

Initially,
stack contains start node

Example of a depth-first search

Stack:

Visit order:

0

Step 1: remove node from stack and visit it

Example of a depth-first search

Stack:

31 Visit order: 0

(only unvisited ones)

Example of a depth-first search

Stack:

3
Visit order:
01

remove node from stack and visit it

Example of a de

0 is already visited, so
 rah we don't add it to the stack

Stack:
32746 Visit order: 01

Step 2: add adjacent nodes to stack (only unvisited ones)

Example of a depth-first search

Stack:

3274

 Visit order: 016

Step 1: remove node from stack and visit it

Example of a depth-first search

Stack:

3274 Visit order: 016

(only unvisited ones)

Example of a depth-first search

Stack:

327 Visit order: 0164

Step 1: remove node from stack and visit it

Example of a depth-first search

Stack:

3275

 Visit order: 0164
(only unvisited ones)

Example of a depth-first search

Stack:

327 Visit order: 01645

Step 1: remove node from stack and visit it

Example of a depth-first search

Stack:

327 Visit order: 01645

Step 2: add adjacent nodes to stack
(only unvisited ones)

Example of a depth-first search

Stack:

32 Visit order: 01645 7

Step 1: remove node from stack and visit it

Example of a depth-first search

Stack:

32 Visit order: 01645
7
Step 2: add adjacent nodes to stack
(only unvisited ones)

Example of a depth-first search

Stack:

3
Visit order:
01645
72
Step 1:
remove node from stack and visit it

Example of a depth-first search

Stack:

398
Visit ord. 0164 Skip to the end...

72
Step 2: add adjacent nodes to stack
(only unvisited ones)

Example of a depth-first search

Stack:

Visit order:

01645

72893

(0) unvisited
(0) queued
(0) visited

Complexity of BFS and DFS

We only look at each edge once (twice for undirected graphs)

- So we look at maximum $|E|$ edges
- $(2 \times|E|$ for undirected graphs)

Complexity is therefore $\mathrm{O}(|\mathrm{E}|)$ - for both breadth-first and depth-first search

Directed acyclic graphs

Here is a directed acyclic graph (DAG)
A DAG is a directed graph without cycles
That means: once you follow an edge there is
 no way back to the source node - we can say that one node is after another in the graph

Example: topological sort

A topological sort of the nodes in a DAG is a list of all the nodes, such that if (u, v) is an edge, then u comes before v in the list Every DAG has a topological sort, often several 012345678 is a topological sort of this DAG, but 015342678 isn't.

Example: topological sort

An example: if nodes are tasks, and an edge (u, v) means "task u must be done before task v", then:
If the graph is a DAG it means there are no impossible dependencies between tasks

A topological sort gives
 a valid order to do the tasks in

Topological sort

We can use a depth-first search to topologically sort the graph:

- Suppose that we do a DFS but using the alternative version where we visit each node only after visiting the adjacent nodes
- If (u, v) is an edge, we will then visit u after we visit v - we will only visit a node once we've visited all nodes that come after it
- So if we print each node as we visit it, we will almost get a topological sort but in reverse order
- So, by printing the nodes in the reverse order we visit them, we will topologically sort the graph!

Summary

Graphs:

- many varieties - directed, undirected, weighted, unweighted
- all are variations on the same basic theme
- graphs can be cyclic or acyclic (directed acyclic graphs very common)
- paths, cycles, connected components

Implementing them:

- adjacency lists - good for sparse graphs
- adjacency matrix - good for dense graphs

Some basic algorithms:

- breadth-first and depth-first search
- unweighted shortest path using BFS
- topological sort using DFS

