
Linked lists (6.5, 16)

Linked lists

Inserting and removing elements in the
middle of a dynamic array takes O(n) time
● (though inserting at the end takes O(1) time)
● (and you can also delete from the middle in O(1)

time if you don't care about preserving the order)

A linked list supports inserting and
deleting elements from any position in
constant time
● But it takes O(n) time to access a specific

position in the list

Singly-linked lists

A singly-linked list is made up of nodes,
where each node contains:
● some data (the node's value)
● a link (reference) to the next node in the list

class Node<E> {
 E data;
 Node<E> next;
}

Singly-linked lists

Linked-list representation of the list
[“Tom”, “Dick”, “Harry”, “Sam”]:

List itself is
just a reference
to the first node

Operations on linked lists

// Insert item at front of list
void addFirst(E item)
// Insert item after another item
void addAfter(Node<E> node, E item)
// Remove first item
void removeFirst()
// Remove item after another item
void removeAfter(Node<E> node)

Example list

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Example of addFirst(E item)

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Calling addFirst(“Ann”):

 next =
 data = "Ann"

Node<String>

item

item.next = head;
head = item;

Example of addAfter

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Calling addAfter(tom, “Ann”):

 next =
 data =
"Ann"

Node<String>

item

 next =
 data = "Ann"

item

node

item.next = node.next;
node.next = item;

Example of removeFirst

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Calling removeFirst():

node to be
removed

head = head.next;

Example of removeAfter

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next =
 data = "Dick"

Node<String>

Calling removeAfter(tom):

 next =
 data = "Ann"

Node<String>

node to be
removed

node

node.next = node.next.next;

A problem

It's bad API design to need both addFirst and
addAfter (likewise removeFirst and
removeAfter):
● Twice as much code to write – twice as many places to

introduce bugs!
● Users of the list library will need special cases in their

code for dealing with the first node

Idea: add a header node, a fake node that sits at
the front of the list but doesn't contain any data
Instead of addFirst(x), we can do
addAfter(headerNode, x)

List with header node (16.1.1)

If we want to add “Ann” before “Tom”, we
can do addAfter(head, “Ann”)

 head =

SLList<String>

 next =
 data = "Tom"

Node<String>

 next = null
 data = "Dick"

Node<String>

 next =
 data =

Node<String>

The header node!

Doubly-linked lists

In a singly-linked list you can only go forwards
through the list:
● If you're at a node, and want to find the previous node, too

bad! Only way is to search forward from the beginning of
the list

In a doubly-linked list, each node has a link to the
next and the previous nodes
You can in O(1) time:
● go forwards and backwards through the list
● insert a node before or after the current one
● modify or delete the current node

The “classic” data structure for sequential access

A doubly-linked list

Each node links to
the next and the

previous node

The list itself
links to the first
and last nodes

Insertion and deletion in doubly-
linked lists

Similar to singly-linked lists, but you
have to update the prev pointer too.
To delete the current node the idea is:

node.next.prev = node.prev;
node.prev.next = node.next;

 next =
 prev =
 data = "Dick"

Node<String>

 next =
 prev =
 data = "Ann"

Node<String>

 next =
 prev =
 data = “Tom”

Node<String>

Insertion and deletion in doubly-
linked lists, continued

To delete the current node the idea is:
node.next.prev = node.prev;
node.prev.next = node.next;

But this CRASHES if we try to delete the first
node, since then node.prev == null! Also, if
we delete the first node, we need to update the
list object's head.
Lots and lots of special cases for all operations:
● What if the node is the first node?
● What if the node is the last node?
● What if the list only has one element so the node is both

the first and the last node?

Getting rid of the special cases

How can we get rid of these special cases?
One idea (see book): use a header node like
for singly-linked lists, but also a footer node.
● head and tail will point at the header and footer

node
● No data node will have null as its next or prev
● All special cases gone!
● Small problem: allocates two extra nodes per list

A cute solution: circularly-linked list with
header node

Circularly-linked list with header node

 head =

LinkedList
<String>

 next =
 prev =
 data = "Tom"

Node<String>

 next =
 prev =
 data = "Dick"

Node<String>

 next =
 prev =
 data =

Node<String>

 next =
 prev =
 data = "Harry"

Node<String>
Here is the

header node
(“prev” links
not shown)

Circularly-linked list with header node

Works out quite nicely!
● head.next is the first element in the list
● head.prev is the last element
● you never need to update head
● no node's next or prev is ever null
● so no special cases!

You can even make do without the header
node – then you have one special case,
when you need to update head

Stacks and lists using linked lists

You can implement a stack using a linked
list:
● push: add to front of list
● pop: remove from front of list

You can also implement a queue:
● enqueue: add to rear of list
● dequeue: remove from front of list

A queue as a singly-linked list

We can implement a queue as a singly-
linked list with an extra rear pointer:

We enqueue elements by adding them to
the back of the list:
● Set rear.next to the new node
● Update rear so it points to the new node

Linked lists vs dynamic arrays

Dynamic arrays:
● have O(1) random access (get and set)
● have amortised O(1) insertion at end
● have O(n) insertion and deletion in middle

Linked lists:
● have O(n) random access
● have O(1) sequential access
● have O(1) insertion in an arbitrary place

(but you have to find that place first)

Complement each other!

What's the problem with this?

int sum(LinkedList<Integer> list) {
 int total = 0;
 for (int i = 0; i < list.size(); i++)
 total += list.get(i);
 return total;
}

list.get is O(n) –
so the whole thing is

O(n2)!

Better!

int sum(LinkedList<Integer> list) {
 int total = 0;
 for (int i: list)
 total += i;
 return total;
} Remember –

linked lists are for
sequential access only

Linked lists – summary

Provide sequential access to a list
● Singly-linked – can only go forwards
● Doubly-linked – can go forwards or backwards

Many variations – header nodes, circular
lists – but they all implement the same
abstract data type (interface)
Can insert or delete or modify a node in
O(1) time
But unlike arrays, random access is O(n)
Java: LinkedList<E> class

Hash tables
(19.1 – 19.3, 19.5 – 19.6)

Hash tables naïvely

A hash table implements a set or map
The plan: take an array of size k
Define a hash function that maps values to
indices in the range {0,...,k-1}
● Example: if the values are integers, hash function

might be h(n) = n mod k

To find, insert or remove a value x, put it
in index h(x) of the array

Hash tables naïvely, example

Implementing a set of integers, suppose
we take a hash table of size 5 and a hash
function h(n) = n mod 5

Inserting 14 gives:

5 17 8
0 1 2 3 4

This hash table contains
{5, 8, 17}

145 17 8
0 1 2 3 4

Similarly, if we
wanted to find 8,
we would look it
up in index 3

A problem

This naïve idea doesn't work.
What if we want to insert 12 into the set?

We should store 12 at index 2, but there's
already something there!
This is called a collision

5 17 8
0 1 2 3 4

The problem with naïve hash tables

Naïve hash tables have two problems:
1. Sometimes two values have the same
hash – this is called a collision
● Two ways of avoiding collisions, chaining and

probing – we will see them later

2. The hash function is specific to a
particular size of array
● Allow the hash function to return an arbitrary

integer and then take it modulo the array size:
h(x) = x.hashCode() mod array.size

Avoiding collisions: chaining

Instead of an array of elements, have an
array of linked lists
To add an element, calculate its hash and
insert it into the list at that index

0 1 2 3 4

5 17 8

Avoiding collisions: chaining

Instead of an array of elements, have an
array of linked lists
To add an element, calculate its hash and
insert it into the list at that index

Inserting 12
into the table

0 1 2 3 4

5 17 8

12

Performance of chained hash tables

If the linked lists are small, chained hash
tables are fast
● If the size is bounded, operations are O(1) time

But if they get big, everything gets slow
Observation 1: the array must be big enough
● If the hash table gets too full (a high load factor),

allocate a new array of about twice the size (rehashing)

Observation 2: the hash function must evenly
distribute the elements!
● If everything has the same hash code, all operations are

O(n)

Defining a good hash function

What is wrong with the following hash
function on strings?

Add together the character code of each character in
the string
(character code of a = 97, b = 98, c = 99 etc.)

Maps e.g. bass and bart to the same hash
code! (s + s = r + t)
Similar strings will be mapped to nearby
hash codes – does not distribute strings
evenly

A hash function on strings

An idea: map strings to integers as follows:

s0 · 128n-1 + s1 · 128n-2 + … + sn-1

where si is the code of the
character at index i
If all characters are ASCII
(character code 0 – 127), each
string is mapped to a different
integer!

The problem

In many languages, when calculating
s0 · 128n-1 + s1 · 128n-2 + … + sn-1,

the calculation happens modulo 232 (integer
overflow)
So the hash will only use the last few
characters!
Solution: replace 128 with 37

s0 · 37n-1 + s1 · 37n-2 + … + sn-1

Use a prime number to get a good distribution
This is what Java uses for strings

Hashing a pair

class C { A a; B b; }

One way: multiply the two hash codes by
different prime numbers and add the
results, then add a constant:
int hashCode() {
 return 31 * a.hashCode() +
 37 * b.hashCode() + 1;
}

Hash functions

A good hash function must distribute
elements evenly to avoid collisions
Defining really good hash functions is a
black art – but the two techniques above
give you decent hash functions
Last trick: make the hash table size a prime
number – this helps mask patterns in the
hash function
● e.g., if the hash function always returns an even

number, if the array size is a power of two then all
the odd indexes will be empty

Linear probing

Another way of dealing with collisions is
linear probing
Uses an array of values, like in the naïve
hash table
If you want to store a value at index i but
it's full, store it in index i+1 instead!
If that's full, try i+2, and so on
...if you get to the end of the array, wrap
around to 0

41

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Tom Dick Harry SamPete

42

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Dick Harry SamPete

Tom

43

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]Dick

Harry SamPete

Tom

44

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry SamPete

Tom

Dick

45

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

SamPete

Tom

Dick

46

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry
Sam

Pete

Tom

Dick

47

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Pete

Tom

DickSam

48

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Pete

Tom

Dick

49

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick

Pete

50

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick

Pete

51

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

DickPete

52

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick
Pete

53

Exempel: Insättning

Name
hashCod
e()

hashCode()
%5

"Tom" 84274 4

"Dick" 2129869 4

"Harry" 69496448 3

"Sam" 82879 4

"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick

Pete

To find “Pete” (hash 3),
you must start at index 3
and work your way all the

way around to index 2

Searching with linear probing

To find an element under linear probing:
● Calculate the hash of the element, i
● Look at array[i]
● If it's the right element, return it!
● If there's no element there, fail
● If there's a different element there, search again

at index (i+1) % array.size

We call a group of adjacent non-empty
indices a cluster

Deleting with linear probing

Can't just remove the element...

Name hashCod
e()

hashCode()
%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

Harry

Sam

Tom

Dick

Pete

If we remove Harry,
Pete will be in the wrong cluster
and we won't be able to find him

Deleting with linear probing

Instead, mark it as deleted (lazy deletion)

Name hashCod
e()

hashCode()
%5

"Tom" 84274 4
"Dick" 2129869 4
"Harry" 69496448 3
"Sam" 82879 4
"Pete" 2484038 3

[0]
[1]
[2]
[3]
[4]

XXXXXX

Sam

Tom

Dick

Pete

The search algorithm will
skip over XXXXXX

Deleting with linear probing

It's useful to think of the invariant here:
● Linear chaining: each element is found at the

index given by its hash code
● Linear probing: each element is found at the

index given by its hash code, or a later index in the
same cluster

Naïve deletion will split a cluster in two,
which may break the invariant
Hence the need for an empty value that
does not mark the end of a cluster

Linear probing performance

To insert or find an element under linear probing,
you might have to look through a whole cluster of
elements
Performance depends on the size of these clusters:
● Small clusters – expected O(1) performance
● Almost-full array – O(n) performance
● If the array is full, you can't insert anything!

Thus you need:
● to expand the array and rehash when it starts getting full
● a hash function that distributes elements evenly

Same situation as with linear chaining!

Linear probing vs linear chaining

In linear chaining, if you insert several
elements with the same hash i, those
elements become slower to find
In linear probing, elements with hash i+1,
i+2, etc., will belong to the same cluster as
element i, and will also get slower to find
If the load factor is too high, this tends to
result in very long clusters in the hash table
– a phenomenon called primary clustering

Linear probing is more sensitive to high load

On the other hand, linear probing uses less memory for a given load
factor, so you can use a bigger array than you would with chaining

Probing vs chaining

load factor
(#elements /

array size)

#comparisons
(linear

probing)

#comparisons
(linear

chaining)

0 % 1.00 1.00
25 % 1.17 1.13
50 % 1.50 1.25
75 % 2.50 1.38
85 % 3.83 1.43
90 % 5.50 1.45
95 % 10.50 1.48

100 % — 1.50

200 % — 2.00

300 % — 2.50

Summary of hash table design

Several details to consider:
● Rehashing: resize the array when the load factor is too high
● A good hash function: need an even distribution
● Collisions: either chaining or probing

Hash tables have expected (average) O(1)
performance if the hash function is random
(there are no patterns) – but it's normally not!
Nevertheless, performance is O(1) in practice
with decent hash functions.
So – theoretical foundations a little shaky, but
very good practical performance.

Hash tables versus BSTs

Hash tables: O(1) performance in practice
(O(n) if very unlucky), BSTs: O(log n) if
balanced
Hash tables are unordered: you can't e.g.
get the elements in increasing order
But they are normally faster than
balanced BSTs, despite the theoretical
O(n) worst case

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

