

Introduction
Data Structures

This course

Lecturer: Nick Smallbone (me)
● nicsma@chalmers.se, room 5463

Assistant: Evgeny Kotelnikov

All info on the website!

mailto:nicsma@chalmers.se

Lectures

Twice a week:
● Wednesday 13-15
● Friday 13-15

Almost always in EL41
(but next Wednesday in EB!)

Labs

Four labs and one hand-in
Do them in pairs if at all possible
Lab supervision:
● Tuesday 13-15
● Tuesday 15-17
● Friday 10-12

All in 3354/3358, starting next Tuesday

Exercises

Optional (but helpful) exercises
One set a week – answers go up following
week
No formal exercise sessions, but you can
ask Evgeny for help at the lab sessions

Course book

● Mark Weiss: Data
Structures and
Problem Solving
Using Java, 4th ed.

● Order from e.g.
Adlibris

● May be able to
manage without it

Not the course book
● Jon Bentley:

Programming Pearls
● A classic computer

science book –
imaginative solutions to
various programming
problems

● Not the course book, but
excellent extra reading
(Also has the advantage
of being short and
cheap!)

A simple problem

Suppose we want to write a program that
reads a file, and then outputs it, twice
Idea: read the file into a string
String result = “”;
Character c = readChar();
while(c != null) {
 result += c;
 c = readChar();
}
System.out.print(result);
System.out.print(result);

A simple problem

Suppose we want to write a program that
reads a file, and then outputs it, twice
Idea: read the file into a string
String result = “”;
Character c = readChar();
while(c != null) {
 result += c;
 c = readChar();
}
System.out.print(result);
System.out.print(result);

This program is
amazingly slow!

The right way to solve it?

Use a StringBuilder instead
StringBuilder result = new StringBuilder();
Character c = readChar();
while(c != null) {
 result.append(c);
 c = readChar();
}
System.out.print(result);
System.out.print(result);

...but: why is there a difference?

Behind the scenes

A string is basically an array of characters
● String s = “hello” char[] s = {'h','e','l','l','o'}↔

This little line of code...
result = result + c;

is:
● Creating a new array one character longer than

before
● Copying the original string into the array, one

character at a time
● Storing the new character at the end

(See CopyNaive.java)

w o r d + s

w o r d s

1. Make a new array

w o r d

2. Copy the old array there

3. Add the new element

Well, is it really so bad?

Appending a single character to an string of
length n needs to copy n characters
Imagine we are reading a file of length n
● ...we append a character n times
● ...the string starts off at length 0, finishes at length n
● ...so average length throughout is n/2
● total: n × n/2 = n2/2 characters copied

For “War and Peace”, n = 3600000
so 1800000 × 3600000 = 6,480,000,000,000
characters copied!
No wonder it's slow!

Improving it (take 1)

It's a bit silly to copy the whole array
every time we append a character
Idea: add some slack to the array
● Whenever the array gets full, make a new array

that's (say) 100 characters bigger
● Then we can add another 99 characters before we

need to copy anything!
● Implementation: array+variable giving size of

currently used part of array

(See Copy100.java)

h e l l o w o r l

h e l l o w o r l

d

Add an element:

h e l l o w o r l

d !

Add an element:

Improving it (take 1)

Does this idea help?
We will avoid copying the array 99
appends out of 100
In other words, we will copy the array
1/100th as often...
...so instead of copying
6,480,000,000,000 characters, we will
copy only 64,800,000,000!
(Oh. That's still not so good.)

Improving it (take 2)

The trick: as the array gets bigger, have
more and more slack space
● Whenever the array gets full, double its size

So we need to copy the array less and less
often as it gets bigger
This works – and is what
StringBuilder does!
See CopyDouble.java

Improving it (take 2)

Why does it work?
● Imagine the array is currently full, e.g., size 1024, and

we append a character
● This means we create a new array of size 2048
● After 1024 appends, the array will be full again and we

will have to copy 2048 characters
● In general, if we have just copied 2n characters, we

have previously added n characters without copying
● This “averages out” at 2 characters copied per append

For “War and Peace”, we copy ~7,200,000
characters. A million times less than the first
version!

Performance – a graph

Zoom in!

Zoom in!

A huge effect from
a small change!

Dynamic arrays

A dynamic array is like an array, but can be
resized – very useful data structure:
● E get(int i);
● void set(int i, E e);
● void add(E e);

Implementation is just as in our file-reading an
example:
● An array
● A variable storing the size of the used part of the array
● add copies the array when it gets full, but doubles the size

of the array each time

Called ArrayList in Java

About strings and StringBuilder

String: array of characters
● Fixed size
● Immutable (can't modify once created)

StringBuilder: dynamic array of characters
● Can be resized and modified efficiently

Why can't the String class use a dynamic
array?

The moral of the story

It's often tempting to program using
“brute force”, using just arrays, strings,
etc.
But by choosing the right data structure:
● The code becomes simpler (compare
arrayList.add(e) against our array-copying
dance from earlier)

● Hence it's easier to avoid mistakes
● You can get whopping performance

improvements!

So what is a data structure anyway?

Vague answer: any way of organising the
data in your program
A data structure always supports a
particular set of operations:
● Arrays: get (a[i]), set (a[i]=x), create (new
int[10])

● Dynamic arrays: same as arrays plus add
● Haskell lists: cons, head, tail
● Many, many more...

Prefix tree – return
all strings starting
with a particular

sequence

Interface vs implementation

As a user, you are mostly interested in
what operations the data structure
supports, not how it works
Terminology:
● The set of operations is an abstract data type

(ADT)
● The data structure implements the ADT
● Example: map is an ADT which can be

implemented by a binary search tree, a 2-3 tree, a
hash table, … (we will come across all these later)

Interface vs implementation

Why study how data structures work
inside? Can't we just use them?
● As computer scientists, you ought to understand

how things work inside
● Sometimes you need to adapt an existing data

structure, which you can only do if you
understand it

● The best way to learn how to design your own data
structures is to study lots of existing ones

This course

● How to design data structures
● Lectures and exercises

● How to reason about their performance
● Lectures, exercises, hand-in

● How to use them and pick the right one
● Labs and exercises

Binary search

Searching

Suppose I give you an array, and ask you
to find a particular value in it, say 4.

5 3 9 2 8 7 3 2 1 4

The only way is to look at each element in
turn.
This is called linear search.
You might have to look at every element
before you find the right one.

Searching

But what if the array is sorted?

1 2 2 3 3 4 5 7 8 9

Then we can use binary search.

Binary search

Suppose we want to look for 4.
We start by looking at the element half
way along the array, which happens to be
3.

1 2 2 3 3 4 5 7 8 9

Binary search

3 is less than 4.
Since the array is sorted, we know that 4
must come after 3.
We can ignore everything before 3.

1 2 2 3 3 4 5 7 8 9

Binary search

Now we repeat the process.
We look at the element half way along
what's left of the array. This happens to
be 7.

1 2 2 3 3 4 5 7 8 9

Binary search

7 is greater than 4.
Since the array is sorted, we know that 4
must come before 7.
We can ignore everything after 7.

1 2 2 3 3 4 5 7 8 9

Binary search

We repeat the process.
We look half way along the array again.
We find 4!

1 2 2 3 3 4 5 7 8 9

Implementing binary search

Keep two indices lo and hi. They represent
the part of the array to search.

Let mid = (lo + hi) / 2 and look at
a[mid] – then either set lo = mid+1, or hi
= mid-1, depending on the value of a[mid]

1 2 2 3 3 4 5 7 8 9

lo himid

Implementing binary search

Keep two indices lo and hi. They represent
the part of the array to search.

Let mid = (lo + hi) / 2 and look at
a[mid] – then either set lo = mid+1, or hi
= mid-1, depending on the value of a[mid]

1 2 2 3 3 4 5 7 8 9

lo hi mid

hi = mid - 1

Performance of binary search

In binary search, we repeatedly:
● Look at one element
● Then halve the part of the array we have to search

With an array of size 2n, after n tries, we are down
to 1 element
On an array of size n, need to look at
log2 n elements!

log2 1000000000 is about 30: 30 tries are enough to
find any item in a sorted array of a billion elements
(compared to a billion tries for linear search!)

Performance – a graph

Zoom in!

Big points

Using data structures correctly simplifies your program
and makes it faster
● Simpler: by using appropriate operations, e.g., “add element”

(dynamic array) instead of “create new array, copy old array to new
array, store element in new array” (plain array)

● Faster: the data structure can do whatever tricks are needed to make
the operations it provides fast (e.g. dynamic arrays – doubling size)

Most data structures are based on some simple idea
● Dynamic arrays: keep some slack in the array
● Binary search: halve the search space every time

We can use maths to predict the performance of our
algorithms (more of this next time)
Reading for today: Weiss 2.4.2-2.4.3 (dynamic arrays),
5.6 (binary search)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

