Lightweight Formal Verification for Tail Recursive Loops

A. Ricardo Morales and J. Nelson Rushton
Department of Computer Science, Texas Tech University, Lubbock, Texas, U.S.A.

Abstract—A formal method is given for generating a cor-
rectness argument from commented code for a tail recursive
function. The generated argument is a set of propositions
which, if true, guarantee the partial correctness of the code
with respect to its documented specification (where by partial
correctness, we mean that if the function returns anything
at all then it returns the correct value). The intended use of
the system is to teach students to write loop invariants.

Keywords: Software Engineering, Program Verification, Func-
tional Programming, Programming Pedagogy.

1. Introduction

This paper presents a formal method for generating a cor-
rectness argument from commented code for a tail recursive
function. The method is formal in the sense that there is
an algorithm for generating a set F' of formulas from the
commented code, such that if the propositions of F' are
true then the code is partially correct (that is, cannot return
an incorrect value, though termination is not necessarily
guaranteed). However, the checking of the propositions of F'
is left to intuition. Thus it might be said that the algorithm
generates a proof, which is correct if the code is correctly
written and commented — but that checking the proof is up
to the programmer.

The real purpose of the method is to help teach students
to comment code with preconditions, postconditions, and
invariants. In order to teach invariants we need not only a
precise definition of invariant, but also a precise definition of
a “key” invariant that can be used in a correctness argument
— for if we simply require students to write an invariant
for a loop that fits the textbook definition, then 0 = 0 will
always do.

To make matters more challenging, we would like to give
a criterion for key invariants that does not depend on the
notion of a full formal argument. That is, we would like to
define the class of invariants that could be used in a proof,
independently of the notion of the proof itself. This allows
invariants to be taught precisely, in contexts where there is
not enough room in the syllabus to fully develop material
on formal arguments.

For example, Code Sample 1 can be proven correct using
the invariant @ = 4! (in the absence of overflow errors,
which will be addressed in Section 3). However, if we
simply ask students to state an invariant of the tail recursive
loop, then 0 = 0 is is also a correct answer. What we seek
is a precise definition that distinguishes key invariants from

useless ones, without reference to their use in a full proof.

Code Sample 1:
; function fac
; precondition: n is a natural number

; postcondition: (fac n) = n!
(define (fac n) (facit 0 1 n))
(define (facit i a n) (cond
[(= 1 n) a]
[else (facit (addl i) (x a (addl i)) n)l))

The material presented here was used in a course on the
theory of programming languages. By itself it took one day
of class time. To understand it, students are required to have
a basic familiarity with of formal logical propositions and
functional programming, but not necessarily with formal
inference rules or proofs. The most important learning
outcome, in our view, is that students gain an intuition for
writing invariants for tail recursive loops. The derivation of
a correctness argument is simply a formalization of what we
do intuitively in our heads, to convince ourselves that we
have written an appropriate invariant.

2. Tail recursion

Code for a tail recursive function in Racket (a freely
available dialect of Lisp) may be written as follows:

(define (faj...an )(R S1...Sn))
(define( h x1...2pm )(cond [ Gy By ]...[ Gk B ]))

where f, h, all a;, and all x; are symbols, and all S;, G,
and B; are expressions. Each B; must either be a base
case which contains no recursive calls to h (or any function
defined in terms of h), or a tail recursive case of the form
(h E;1...E;n)), where the E; ;’s contain no calls to h (or
any function which depends on h).

As a constraint on the use of this method, we assume
that if f and h have any parameters in common, then these
parameters are passed by h to itself unchanged in each
recursive call. More precisely, if z; = a; for some ¢ and
J, then for each recursive call (h Ej1...FEy,,) we have
that £}, ; is the symbol a;.

3. Invariants

Good documentation for the tail recursive function shown
in Code Sample 1 should also include an invariant. Loosely
speaking, the invariant is a property of the arguments of the
recursive helper h which has the following three properties:



1) it is true when A is first called,
2) it remains true for each recursive call to h, and
3) it guarantees a correct return value.
For example, our factorial function could be documented
as follows:
;invariant : a = i!

In evaluating the expression ( fac 3 ), for example, the
following calls to facit will be generated, in order:

(facit 013)
(facit113)
( facit 223)
(facit 363)

The invariant says that for each call ( facit ¢ a n ) made
during evaluation, we have a = i!. Note this is true in the
trace above. Since execution stops only when ¢ = n, this
means we have a = n! when execution halts. Since the
expression returned is a, this implies that n! is returned, as
desired.

Next we will describe more precisely the properties which
the invariant must have in relation to the pre- and post-
conditions. The precondition is stated as a formula PRE
whose free variables are among a; . . . a,. The postcondition
is stated as a formula POST whose free variables are also
among a; . ..a,. The invariant is stated as a sentence /INV
whose free variables are among 1 . .. Z.,.

Condition 1, that the invariant must hold on the first call
to h, is written formally as

PRE = INV(Sy,...,Sm) (1

where INV(Sy,...,Sm) is the sentence obtained from
INV by substituting S; for z;, 1 < j <m.

Condition 2, that the invariant remains true in each
recursive call, corresponds, for each recursive case
[G; (h Ei1...E;n)] to asentence of the form

INV/\"(Gl)/\.../\—'(GZ‘_l)/\Gi =

INV(Ei1, ..., Eim) (2

where INV(E; 1, ..., E;n) is the sentence obtained from
INV by substituting E; ; for z; , 1 < j <m.

Condition 3, that the invariant guarantees a correct return
value corresponds, for each base case [G; B;], to a sentence
of the form

INV A —\(Gl) VANAN _\(Gi_1) NG; = POST(Bl) 3)

where POST(B;) is the sentence obtained from POST by
substituting B; for (f a1 ...ay,).

These three formulas can be considered as premises for
a valid argument that the defined function never returns
an incorrect value. That is, if the formulas are true in the
intended interpretation, then the function cannot returns an
incorrect value.

In the case of our factorial function in Code Sample 1,
conditions (1), (2), and (3) are instantiated as follows:

neNAR>0 = 0#1 4
a=iA=(i=n) = (xa (addli))= (addl i)!(5)
a=ilANi=n = a=n! (6)

Unfortunately, statement (5) is not true. As a skeptical
reader may have guessed before now, the supposed invariant
fails to hold if execution of a recursive call results in an
arithmetic overflow. One way to handle this is to write a
new precondition and invariant that guarantee there is no
arithmetic overflow. Racket has big integers built in, and it
can store integers up to 1000! (and, in fact, much higher).
Thus a fully documented factorial implementation can be
written as follows:

Code Sample 2:
; function fac
; precondition: n in N and 0<=n<=1000
; postcondition: (fac n) = n!

(define (fac n) (facit 0 1 n))

; invariant: 0<=i<=n<=1000 and a=i!

(define (facit i a n) (cond

[(= 1 n) al
[else (facit (addl i) (* a (addl i)) n)1l))

The corresponding (correct) premises are as follows:
neNAO<Nn <1000 = 0O'=1 @)

0<i<n<1000Aa=ilA—(i=n)
= ®)
0 < (addl i) <n <1000 A (% a (addl 7)) = (addl @)!

0<i<n<1000Na=iAi=n = a=n! (9

In a more general context, these three steps would be
the base case, induction step, and final step of a a proof
by induction that the function is partially correct (that
is, cannot return an incorrect value). The induction proof
can be automatically generated from these three key steps,
and is correct if premises (1)-(3) are sound. This gives
a method of proving that a tail recursive function never
returns an incorrect value, which requires only three lines
of documentation (at least two of which, and arguably all of
which, ought to be written anyway), and a tool to generate
the key proof steps so that they may be examined during a
code review.



4. Another Example

Here is another simple example:

Code Sample 3:
;maximum
jprecondition: L is a nonempty list of numbers
;jpostcondition: (maximum L)
; is the largest element of L

(define (maximum L) (maxit (car L) (cdr L)))
;invariant: MAXIMUM(L) = MAX (x,MAXIMUM/(s))
(define (maxit x s) (cond

[ (empty? s) x]

[(< x (car s)) (maxit (car s) (cdr s))]

[else (maxit x (cdr s))1))

For built-in functions, we will adopt the convention that
an identifier in all caps denotes the mathematical function
implemented by the corresponding operator in lower case
letters. For user defined functions the convention is that the
all-caps identifier denotes an ideal implementation satisfying
PRE = POST. For example, here MAXIMUM is the
mathematical function which is supposed to be implemented
by the Racket function with the same name in lower case.
This convention was found to be helpful because (1) the
desired behavior will always need to be referred to in the
argument for correctness, and (2) there is often no formal
specification which is practically more clear than our pre-
existing intuitive picture of the desired behavior. Some
students seemed to think this was circular, but the following
explanation helped: MAXIMUM is the function we want to
write; maximum is the function we actually wrote; and the
question is whether they are the same. That question cannot
be answered without talking about both.

The premises for the correctness argument for Code
Sample 3 are as follows:

(L is a nonempty list of numbers)

= (10)

MAXIMUM(L) = MAX ((car L), MAXIMUM(cdr L))

MAXIMUM(L) = MAX (z, MAXIMUM(s)) A
—(empty? s) Ax < (car s) = (11)
MAXIMUM(L) = M AX ((car s), MAXIMUM (cdr s))

MAXIMUM(L) = M AX (x, MAXIMUM(s))A

—(empty? s) A=z < (car s) = (12)
MAXIMUM(L) = MAX (z, MAXIMUM(cdr s))
MAXIMUM(L) = MAX (z, MAXIMUM(s))A
(empty? s) = (13)

MAXIMUM(L) = z

One can check that these four statements are true, and
infer from this the partial correctness of the code.

5. Conclusions and Future Work

This material was covered in one lecture of an hour and
twenty minutes, in the junior level course Concepts of Pro-
gramming Languages at Texas Tech, during Fall 2010. Four
questions were given on the final exam which covered the
material, requiring students to write tail recursive solutions
for finding Fibonacci numbers and reversing a list, document
their code with variants and invariants, and write formal
premises corresponding to the preservation of truth of the
invariant, and the guarantee of a correct return value. Out of
52 students who took the exam, 9 displayed mastery on these
questions (as measured by receiving at least 90% credit on
them) and 19 displayed either competency or mastery (by
receiving at least 75% credit). This was a class where most
students displayed competency or mastery on most material;
and so these results seem to indicate a problem with either
the material or the presentation. It should be noted that
the course, of which this material was a major component,
was well received in general, ranking higher than any other
course in the department for Fall 2010 as measured by
student responses to the question was this course effective
overall?

We propose a two part hypothesis to explain the data:

1) Like all methods of rigorous or formal reasoning,
the approach requires mathematical sophistication that
must be built up over a period of years, and is generally
not exercised by other classes in our curriculum.

2) The examples used to demonstrate the method were
all of different sorts, requiring different mathematical
concepts to invent an appropriate invariant.

Item (2) seemed like a good idea at the time. Indeed it
is certainly beneficial to work several kinds of examples.
However, having no two examples alike meant that students
were loaded with novel concepts at every turn in addition
to the target material.

We hypothesize that this can be improved by repeat-
ing several examples using the same design pattern (e.g.,
stepping through successive integers from low to high)
before moving to another design pattern. Additionally, we
hypothesize that the method itself can be streamlined in
most cases by stating special case theorems that apply
to common design patterns, such as recursively popping
through a list or stepping through consecutive integers. This
would be analogous to stating the Pythagorean Theorem
and using it for the common special case of right triangles,
instead of using the more general (and more complex) law
of cosines. In the next iteration we plan to augment the
theory with simplified methods for important special cases
and demonstrate several uses of each.



