
DIT950 Guest Lecture

Shallow introduction to formal
methods

Education
Until

~18 y.o.

Birth

Bachelor
~3y

PhD
~3,~5y

Master
~2y

Why study?

Why study?

● get jobs
– better paid
– less repetitive
– more free time (…?)

● learn new things
● be more aware
● enjoy my time

What to study?

What to study?

● Easy stuff
● Hard stuff
● What earns me money
● What I enjoy

Personal growth

If you are happy,

You and others will benefit.

Some see this as the basis of Capitalism

Some saw Capitalism as a consequence of
the Protestant reform

● Max Weber, “Die protestantische Ethik und
der Geist des Kapitalismus”

● Carlo M. Cipolla, “Pepper, Wine (and Wool)”

PhD
~3,~5y

Master
~2y

Main Differences
with
bachelor and master
programs:

Independency
Googling for solutions becomes

harder

Research at CSE

if (a){
 ...
}
else{
 ...
}

Research at Software
Technology

?
Functional

Programming
Language

Based
Security

Formal
Methods

Formal Methods:

Automate

the process of showing

Correctness of a
program

Example:
termination as correctness

// Does this terminate?

public void meth(int a){

 while(a<3){

 a++;

 }

}

Example:
type correctness

// What happens here?

int a = “Kalle Anka”;

● Type systems are formal entities

(= “mathematically defined”)

Logic and mathematics

● Logic = basis of formal methods
● Prevent the ambiguities of natural

language

Languages

Running
dog

Syntax
Semantics:

Usually
subjective

How to make semantics
objective

● Invent a terminology
– (e.g. Medical science, engineering)

● Use mathematics and logic

Either way: refer to basic concepts
that we can assume everyone
understands in the same way

Use of mathematics to describe
syntax and semantics

of a language

Usually means: computers can process it

Formal Methods theoretical
tools

● Formal logics:
– Propositional
– N-th order
– Temporal

● Formal languages

Propositional logic

● Formalizes events/facts:

First (N-th) order logic

● Formalizes
– events+objects
– their properties
– The relations among objects
– First order logic contains Propositional

logic

FOL
● Red(ferrari) Expensive(ferrari)

Red(bugatti) Expensive(bugatti)

Red(lamborghini) Expensive(lamborghini)
● Constants: bugatti, ferrari, lamborghini
● Predicates: Red, Expensive

● In FOL: 3 constants+2 predicates
● In PL : 3*2 symbols: must express everything as a fact

– e.g. “ferrari is red”, “lamborghini is expensive”
● If a porsche is added, in PL need to define 2 more symbols

FOL vs PL

● FOL allows to express properties of
items in sets

In a compact way, without having to
know the items in advance

More on this:

● DAT060, Logic in Computer Science

Formal Methods tools

● Theorem proving
● Static analysis
● Model checking
● Specification Languages

Theorem Prover

● Theorem:

logical formula that is always true (valid).
– And there exist a proof of such validity.

e.g. Sum of triangle's angles is 180°
● A theorem prover can prove a logical

formula (semi) automatically.

Static analysis

● Algorithms that can extract properties of
a program without running it.

● e.g. “No null-pointer exception is
thrown”

● Formal syntax and formal semantics is
needed

Typical use

static analysis algorithm

transforms a

program+desired property

into a logical formula

then input to theorem prover to see if
it holds.

Model Checking

● Software described by
– Sequence of machine states

● To prove some properties
– Not all states are needed

● “Abstract away” the states
– Ockham's razor

Automatic door

!open

open

open

sensor_read

!sensor_read

sensor_lock

sensor_read

In each state the door is
either

open
or not open (!open)

Automatic door

!open

open

open

sensor_read

!sensor_read

sensor_lock

sensor_read

 ■ open (always open)

 ◆ open (eventually open)

 ◆■ open (eventually open)

Using temporal logic
one can ask
questions
about runs of the system

Formal Specification language

● Another computer language
● for telling what a program should do

– Not for “computing things”
● Efficiency should not be important
● Correctness becomes dependent

from/defined by such specification

Correct
Program

Programmer's
Intention

Correct
Program

Formal
Methods

tools
Formal Specification

Correctness
Of

tools

Programmer's
Intention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

