
Design
Slide Series 5

Content

Design goals
Design principles
Single responsibility Principle, KISS, ...
Design of methods, classes, ...
Canonical form (part I)
Service Modules
Facade, Proxy, Observer Pattern
Model dependencies, messaging
MVC model
Exceptions

Word of Wisdom

 "Perfection [in design] is achieved, not when there is
nothing more to add, but when there is nothing left to
take away." // Antoine de Saint-Exupéry

Design goals

In this course
● Create an identifiable program structure
● Enforce localization of responsibilities
● Minimize dependencies
● Control (minimize) state

Thereby making it possible to create a
modifiable, extensible and testable program
(with possible reusable parts)

Design Principles

Software design principles represent a set of
guidelines [no laws] that helps us to avoid
having a bad design
● Important to notice that: do not shift all the principles

to extremes, because in real cases is impossible to
achieve them from all point of views

Have seen some
● Interface segregation principle
● Dependency inversion principle
● .. more to come: Single responsibility principle

Design Principles, cont

Two often mentioned collections of
principles

SOLID by Robert C. Martin (early 2000's, hmm...)

GRASP by Craig Larman

Principles overlap, also with other notions (design
patterns)

A general approach is KISS

http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
http://en.wikipedia.org/wiki/GRASP_(object-oriented_design)
http://en.wikipedia.org/wiki/GRASP_(object-oriented_design)
http://en.wikipedia.org/wiki/KISS_principle

Single Responsibility Principle

Everything should have one single
(well defined) responsibility

At a basic level this means: Attributes,
methods, classes and modules
● If you can't find a good attribute/method/ class-

name possible violating SRP
● Easy to state, sometimes hard to implement
● Aka Separation of Concerns

Reasons for SRP

Will reduce dependencies and
● If many responsibilities the "reason to change"

increases (if changing one responsibility in a non-
SRP class, possible other responsibilities
affected). Violates OPC-principle

● Easier to understand (smaller more focused)
● Easier to combine with other (easier to replace)
● Easier to reuse

Examples upcoming...

Refactoring

"Code refactoring is a "disciplined technique for
restructuring an existing body of code, altering its
internal structure without changing its external behavior"
// Martin Fowler

Techniques
● Split, collapse classes/interfaces/methods
● Replace classes with interfaces
● Move methods between classes
● Move classes/interfaces between modules
● ... (many supported by Eclipse)

Design Levels

Design is a multilevel activity
● Attributes
● Methods
● Classes
● Class aggregates or similar
● Modules
● Application
● System ... (a small one in this course)
● Systems ... (not in this course)

Design Levels: Attributes

As few as possible (reduce state)

One attribute for each fact (no shared)

Always accessed with set/get (if really
needed, avoid set/get,)

public class MyClass {

public int i; // Bad not possible to do i < 0
} // any other check/action/...

Design Levels : Methods

Have seen
● Handling nulls, in- and out
● Reasoning using invariants
● Mutators vs. Accessors

Other issues
● SRP/Law of Demeter
● Limit number of parameters (prefer objects to

primitive types). Have impact on testing
(combinatorial explosion of test cases)

● Closureness (int->int->int)
● Returning "this", booleans as signals, ...

Principle of Least Surprise

"The design should match the user's experience,
expectations, and mental models."

"In more abstract settings like an API, the expectation
that function or method names intuitively match their
behavior is another example. This practice also involves
the application of sensible defaults." // Wikipedia

How does your methods behave??

System.in is an InputStream and the read() method definition says it returns an int. But calling
System.in.read() does NOT return the integer you type at the keyboard.

Design Levels : Classes and
Aggregates

Have seen
● Reduce state
● SRP/Coupling (dependencies)/Cohesion/avoid new
● Reducing associations (dependencies)
● Reasoning using class invariants (no representation

exposure)
● Failure Atomicity
● Single entry points (aggregate roots)

Other issues...

Class Design: Information Expert

"Information Expert will lead to placing the
responsibility on the class with the most
information required to fulfill it"

● The class has the data (the knowledge), it should
perform operations on the data ... not just pass it
around to others classes (i.e. set/get)

● Similar to info hiding, SRP

Design Levels : Interfaces

Have seen
● Interface segregation
● No creation methods in interfaces, separate

construction from use
● Construction is part of the implementation not the

specification (use factories)

Classes: Canonical Form

Issues common to all objects of all classes
● HashCode (fairly unique numerical id)
● Equality
● Copying
● Utilities, string representation
● Serializing

Many of these have default implementations
in java.lang.Object

Classes: HashCode*

"In the Java programming language, every class must
provide a hashCode() method which digests the data
stored in an instance of the class into a single hash value
(a 32-bit signed integer).This hash is used by other code
when storing or manipulating the instance"// Wikipedia

● Used with HashMap and other collections
● Default implementation in java.lang.Object (so

inherited by all)
● Let Eclipse generate!

Classes: Equality*

Very common to be able to compare
instances
● Default implementation in java.lang.Object.equals()

uses == (so by reference)
● Normally "by values" more useful
● If so; have to override equals()-method (tricky when

inheritance, more to come...)
● Let Eclipse generate
● Two objects which equals() says are equal must

report the same hash value (else equal objects
possibly end up in different locations and thus not
found).

Classes: Copying*

Also very common to produce a copy of an
instance
● Default implementation in java.lang.Object.clone()

creates a shallow copy (i.e. copy by value, any
attribute value is copied)

● Will create shared references
● If other behaviour (deep copy) must implement own

clone() (overriding and make public)
● Tricky and strange, must handle unnecessary

exception, implement marker interface and use a
specific "idiom", problems with final. No constructor
may be involved !?!... see later at inheritance...

Classes: Other Issues

Besides equal often need less than/greater
than (sorting etc.)

Two standard interfaces
● java.util.Comparable
● java.util.Comparator

Comparable*

// Only method in Comparable (result = r)
// r < 0 (less), r == 0 (equal), 0 < r (bigger) than
other
// object
public int compareTo(T t){
...
}

Usage: The type has a "natural" ordering

Many standard classes implement (String)
// Usage (aCollection implements comparable)
Collections.sort(aCollection);

Comparable and Equals*

Should be consistent
● If equals() true then comateTo() should be 0
"This is so because sorted sets (and sorted maps) without
explicit comparators behave "strangely" when they are
used with elements (or keys) whose natural ordering is
inconsistent with equals" // Javadoc Comparable

// Inconsistent equals and compareTo (says API but..?)
BigDecimal b1 = BigDecimal.valueOf(4.0);
BigDecimal b2 = BigDecimal.valueOf(4.00);
System.out.println(b1.compareTo(b2) == 0); // True
System.out.println(b1.equals(b2)); // False

Comparator*

Comparable have to decide outcome at class creation
(comparision hard coded). Comparator is more flexible,
passing in a comparator to sort methods

// Same outcome as comparator
public int compare(T t1, T t2) {
...
}

// Usage (possible to dynamically sort)
Collections.sort(a, myComparatorObject);

Module Design

Have seen
● Info hiding/cohesion/coupling
● Unified interface
● Stateless vs Stateful module

Stateful vs Stateless Modules

In a stateful subsystem data is remembered
between calls
● Normally need to call methods in specific order (a

dependency)
● Very careful design of API, how to react if methods

called in wrong order (IllegalStateException)?
● Avoid

Compare: Trie/Dictionary-module vs Translator

Implementing a Service Module

Service module = module with unified
functional interface (SRP, low coupling, high
cohesion)

Standard implementation technique, use the
Facade design pattern...

Facade Design Pattern*

Only visible types are the factory and the interface
(possible parameter and return types)

subsystem

<<Interface>>
ISubsystem

<<Hidden>>
SubsystemImpl

<<Static Factory>>
SubsystemFactory

+ getSubsystem(): ISubsystem

HelperClass

HelperClass

HelperClass

Rest of
application

This is a
realization of
programming
to an interface

Model Dependencies on Services

Model classes don't handles technical
services (they represent a model of the
problem). SRP

// Model classes don't handle services, bad
modelObject.save();

// Use a service module!
fileService.save(modelObject);

 ... but some services intrinsically in model...

Services in Model

Need service in model, but SRP/OPC says...
no!
● Logging
● Messaging!

 How to...??? Subclassing
 possible ... more to come...

Proxy Pattern*

Proxy pattern lets one object "stand-in" for
another
● Both have same interface

Types
● Virtual Proxy, lightweight stand-in for some resource

intensive object (image)
● Access Proxy, controls access to resources

(UserProxy)
● Remote Proxy, represents an object somewhere else

(proxy on client, real object on server)

Using a Proxy for Model
Messaging

Avoid messaging code in model

<<Proxy>>
ModelProxy

calls forwarded to model,
state changes sent as

message

Model

<Interface>>
IModel

Messaging

Possible
return value

Method call

Rest of
application

To receivers

Applications with Graphical User
Interfaces

Designing GUI applications non-trivial
● Is GUI a service (in/output to/from model)?
● Or is Model a subsystem used by GUI?
● How to control dependencies (GUI often has a lot of

administrative (trivial) code).
● How to control the flow?
● ...

Model-View-Control

Common solution for GUI applications (MVC-design
(architecture)). Partitioning application into
● View, the GUI, a view of the model (this part is very

transient, frequently changed, also possible
completely different technologies, PC/Mac-app,
smartphone, web)

● Model, the OO-model (and associated services). If
done correctly this should be pretty stable.

● Control, parts that coordinate the interaction between
GUI and Model

Model-View-Control, cont

Basic parts and dependencies
View

Model Control

Some kind of
dependencies,
more to come...

Mutual
dependencies

No problem

Aside: Readonly

View will display state of the model
● Shouldn't be able to modify model
● Would be very nice if we had "read only" references

(but we don't)
● Immutable or Frozen no problem (but in general a too

hard restriction (must copy all time))

 No default support....

MVC and the Model

View and Control could see Model is a
stateful subsystem
● Model has interface
● Each (non read) call to model transform state (one

finished complete transformation)
● After call possible to inspect new state (and act

accordingly, possible display)

MVC and the Model, cont

// Imagine something like this
while(notFinished){ // Loop act as control

indata = view.getIt();
model.changeState(indata);
outdata = model.getViewOfState();
view.display(outdata); // Done indirectly (not like

this)
}
Notes:
Model as a stateful subsystem
Should be possible to "run" model without GUI
Indata possible from many controls (toolbar, menu, button)
Outdata possible displayed in many different gui locations
(display content, status bar, dialogs, ...)
GUI can enable/disable but logic in model

MVC Design using Observer*

View

Model Control

Classes in GUI
observing the model
(output) implements
interface

<<Interface>>
IObserver

Model only
depends on
interface

Minimize
usage of

Have to handle this,
more later...

Possible return
values

Used to
notify state
changes

Observer Pattern

Decoupling observers from the observable
● Push design (vs pull design)

Model
addObserver(IObserver): void

List<IObserver> obs =

<<Interface>>
IObserver

notify(stateData) : void

A

B

C
Model call notify at state change in model, i.e.
pushing info to observers

A, B and C have to register
(somewhere) to be put into
the observer list (a
dependency)

Observer never call
model (query for
state changes i.e.
pulling)

Observer: A Variation*

Use messaging (implemented as an
EventBus)
● Will remove any direct dependency Observer <->

Observable

Model

EventBus.send(stateChange)

<<Interface>>
EventHandler

onEvent(Event e): void

A

B

<<Singleton>>
EventBus

Somewhere: EventBus.register(A) and EventBus.register(B)

Event
object

Aside: Messaging Frameworks

There are existing "frameworks" to support
messaging
● Google Guava (EventBus also)
● Java context and dependency injection (aka CDI, aka

Weld)
● Will also reduce dependencies, construct application

(using @annotations)

If building real application should inspect
these or similar

MVC Implementation

Model to view: Observer (possible Model-
proxy and EventBus)

Control to model: No problem, control has
direct reference to model, model never has
(needs) reference to control.

View to Control: Tricky

Control and View

Controls need input from view (so V -> C)
Controls possible need to manipulate GUI
● Enable/disable button, etc.
● If control methods has return values (so C -> V)

Possible implementations (remove mutual
dependency)
● Let controls be listeners. GUI dependencies on

interface. Possible to connect to buttons etc.
● Let controls use interface (IOutputable or similar) to

GUI (or standard Java classes like JButton)

Control and View: Implementation 1*

Controls acts as listeners, connect directly
to buttons etc. in GUI

<<Interface>>
java.awt.Action

SomeControl
actionPerformed(...)

JPanel
(or other)

Standard Java GUI
classes

java.swing.AbstractAction
putValue(String, Object): void

getValue(String): Object (Possible), can function
as a map to retrieve GUI
components in the
controller

Harder to manipulate
GUI in GUI class,
have to pass
references (buttons
etc) to SomeControl

Or some other interfaceview

Control and View: Implementation 2*

Have listeners in GUI, listeners calls controls

<<Interface>>
IOutputable

SomeControlJPanel
(or other)

Standard Java GUI
classes

Possible to manipulate GUI
in listener before/after
calling control

<<Interface>>
ActionListener

view

Division of Labor: Control vs. Model

How much should be done by control vs.
model
● Anemic model: All work in control. Model pure data

(violates information expert)
● Fat model: Most of (all) work in model. Normally need

thin abstraction layer over model (control). Something
manipulating the model

● Divided: Some parts in control others in model. Have
to use your skills...(principles, coupling, cohesion,
abstraction, ,...).

Division of Labor: Example

WordFeud, fat or
anemic?

Do it in Control? ...

or much in Model?

Constructing a MVC Application

1. Model (relevant services) constructed (possible using
a factory) in public static void main... (using a Swing-
idiom, because of threads, more later...)
a. ...or just construct application main window (later

call to File > New to construct model and GUI, use
special StartControl)

2. Let GUI factory construct the GUI, pass in model
interface

3. Let GUI factory connect model, control and GUI and
return the GUI

4. Often need EndControl to clean up save options etc.
 Use factories!

Advanced Control Issues

State pattern*

Exceptions

Large, difficult not very well understood topic

Exceptions used for "exceptional" event not for control
flow
● A datafile is missing.. program probably can't handle,

exception ok
● Looking for an element in a list, it's not there.. possible

to handle, ... no exception
● If looking for an elements using an invalid index...

collection (ArrayList) will throw Exception, ok

Exceptions vs Return Values

// Using return values will clutter up code
r1 = s.call();
if(r1 != null){

r2 = r1.call();
if(r2 != null){

 r3.call();
...

}else {
...

}else{
...

}else{
...

AVOID!

Java Exception Handling

"...the Java programming language specifies that an
exception will be thrown when semantic constraints are
violated and will cause a non-local transfer of control
from the point where the exception occurred to a point
that can be specified by the programmer."

"An exception is said to be thrown from the point where it
occurred and is said to be caught at the point to which
control is transferred"

"Every exception is represented by an instance of the
class Throwable or one of its subclasses"// JLS 11

Java Exception Handling, cont

"During the process of throwing an exception, the Java
virtual machine abruptly completes, one by one, any
expressions, statements, method and constructor
invocations, initializers, and field initialization expressions
that have begun but not completed execution ... This
process continues until a handler is found that indicates
that it handles that particular exception by naming the
class of the exception or a superclass of the class of the
exception"// JLS 11

If no handler found program terminates

Runtime Handling of Exceptions*

"When an exception is thrown (§14.18), control is
transferred from the code that caused the exception to
the nearest dynamically enclosing catch clause, if any, of
a try statement (§14.20) that can handle the exception."
/JLS 11.3

So will possible jump through many method calls and
end up in very different part of program (non-local
transfer)

Basic Exception Example

// A methods that throws (using a throws clause)
public void doIt() throws IOException {
...// File not found will generate IOException
}

// Handle exception
try{

// Somewhere, possible far away o.doIt() may throw;
// No statements after executed if an exception!

} catch (IoException e){ // A handler, exception caught
// Try to recover...

}

Causes of Exceptions

Causes

● An abnormal execution condition was synchronously
detected by the Java virtual machine

● A throw statement was executed

// Explicit generation of exception
throw new IllegalArgumentException("He's dead");

Java Exception Types

<<Interface>>
Throwable

Error Exception

RuntimeException Any user defiend
subtype (and many

standard)

Any user defined subtype
(and many standard)

Not used
by us,
used
internally

Unchecked

Checked

For all classes: Constructor take String argument specifying cause of exception.
Retrievable with e.getMessage()

Checked vs. Unchecked Exceptions*

"The unchecked exception classes are the runtime exception classes and
the error classes. (color as previous slide)"

"The checked exception classes are all exception classes other than the
unchecked exception classes. That is, the checked exception classes are all
subclasses of Throwable other than RuntimeException and its subclasses
and Error and its subclasses (color as previous slide)."

"The Java programming language requires that a program contains handlers
for checked exceptions which can result from execution of a method or
constructor" //JLS 11

 Checked exceptions checked compile time!

Exception Compile Time Checking

It is a compile-time error if a method or constructor body can throw some exception class E when
E is a checked exception class and E is not a subclass of some class declared in the throws clause
of the method or constructor.

It is a compile-time error if a class variable initializer (§8.3.2) or static initializer (§8.7) of a named
class or interface can throw a checked exception class.

It is a compile-time error if an instance variable initializer or instance initializer of a named class
can throw a checked exception class unless that exception class or one of its superclasses is
explicitly declared in the throws clause of each constructor of its class and the class has at least
one explicitly declared constructor.

Note that no compile-time error is due if an instance variable initializer or instance initializer of an
anonymous class (§15.9.5) can throw an exception class. ... much more...

It is a compile-time error if a catch clause can catch checked exception class E1 and it is not the
case that the try block corresponding to the catch clause can throw a checked exception class
that is a subclass or superclass of E1, unless E1 is Exception or a superclass of Exception.

It is a compile-time error if a catch clause can catch (§11.2) checked exception class E1 and a
preceding catch clause of the immediately enclosing try statement can catch E1 or a superclass
of E1. // JLS 11.2.3

The (Checked) Exception Debate

Most languages don't have checked exceptions
Pros checked exceptions
● Designed to reduce the number of exceptions which are not properly

handled
● Part of the contract between the implementor and user of the method

or constructor

Cons checked exceptions
● They often pollute APIs. Exception may accumulate (very many

exceptions in throws clause).
● Not part of signature but affects the API (see override, upcoming)
● Checked exceptions make sense only when there is a clear and

documented way to recover from the exception
● Exception swallowing (effectively cancel the first Pros point)

● Non local jumps (similar to goto)*

Exceptions: Overriding*

"A method that overrides or hides another method, including methods that
implement abstract methods defined in interfaces, may not be declared to
throw more checked exceptions than the overridden or hidden method."

"More precisely, suppose that B is a class or interface, and A is a superclass
or superinterface of B, and a method declaration n in B overrides or hides a
method declaration m in A. Then:
- If n has a throws clause that mentions any checked exception types, then
m must have a throws clause, or a compile-time error occurs.
- For every checked exception type listed in the throws clause of n, that
same exception class or one of its supertypes must occur in ... the throws
clause of m; otherwise, a compile-time error occurs. // JLS 8.4.8.3

General Form of try

// General form
try(some AutoClosable resources) {

// Possible exception;
} catch (E1 e){
...
} catch (E2 e){
...
} finally {

// This will always be executed, no matter...!*
}

// Also possible in Java 7 (nice, more compact)
} catch (E1 | E2 e){

Exception Swallowing

By far the worst way to handle exceptions, strictly
forbidden!

// BAD; BAD; BAD
try{

// Possible exception;
} catch (E e){
} // Empty, nothing here, but exception

// handled program will continue...
// So exception unnoticed for now...

In Practice How To?

No common agreed upon best practices*
● Of course if possible to handle the exception do so

Possible
● Skip checked exception. Catch checked exceptions,

wrap in RuntimeException and re-throw (exception
tunneling)*

● Catch and send exception to central
ExceptionHandler (handler can act as observable to
propagate exceptions to GUI)

In Practice How To? cont

Exception translation*
● Catch and rethrow at appropriate abstraction level

(meaningful for the level). Especially for end users
who doesn't understand strange technical messages

Summary

● Design goals
● Canonical form is to be considered
● Quite a few principles (some may overlap and sadly,

contradict)
● Some design patterns: Facade, Proxy, ...
● Keep model clean, use services
● The MVC model is theoretically simple but

implementation has many forms
● Exceptions: No best practice

