
Imperative Object
Oriented Programming

Slide Series 1

Content

Object orientation/object oriented programming/UML
Imperative programming and state
By value/By reference
Side effects/Referential transparency
Imperative/Declarative style
Declarative style in imperative programs
Correctness
Testing
Linked data structures

The Object Oriented Paradigm

Program seen as a collection of interacting objects

● An object model of some problem
● Close connection between problem and program
● No object model => Not an object oriented program

UML

Unified Modelling Language*, modeling language to
describe different aspects of an OO-model (graphic
notation techniques)

Many kind of visual diagrams
- Class diagram (we only use this)
- Sequence diagram
- ...

*) See examples of UML diagrams far down right

http://www.uml-diagrams.org/

UML Class Diagram

Used to show structure. Classes as rectangles,
references (between objects) as lines, … confusing!
Number of objects referenced indicated

Store

Shelf

 Game

ShelfItem

Movie

1
n n1

UML Class diagram of
store

A Model of … ?

Usage of UML

Possible to use UML in formal ways, but we don't ...

We use it as a shorthand, to communicate principles and
design at a higher level (than code)
● Using a very small subset of symbols (mostly from

class diagrams)
● More to come...

Object Oriented Programming

Using programming techniques designed to support
creation and execution of object models

Programming techniques include features such as
classes and/or objects, data abstraction, encapsulation,
messaging, modularity, polymorphism, and inheritance

Imperative Programming

“Imperative programming is a programming paradigm
that describes computation in terms of statements that
change a program state” // Wikipedia

● Describes how thing should be done!
● Contrast: Declarative programming, what to be

accomplished (Functional programming, Logic
programming, ...)

State

We do imperative OO programming (in Java)
● We have an object model
● We have objects
● Objects have state

State = all the stored information, at a given point in time
(in this course: the values for all instance variables at any
time (for all objects))

Statements

Imperative programs are built up by sequences of
statements (in Java terminated by ;)
● The smallest standalone element

○ Example simple stmts: return; System.out.
println();

○ Example compound stmts: if, switch, while, for
○ Denotes an action (not a value)
○ Similar to a sentence in natural language

● The sequence ordering often matters

Expressions

Statement built up by expression
● An expression denote a value, composed of literals

(explicit values in code), variables, method calls,
operators, ...

// Expressions

true && false || 1 > 0

1 + 4.5 // 1 and 4.5 are literals

"hej".length()

x = y = 1 // What's the value?

Variables

Local variable (incl. parameters/arguments to methods)
- Variable declared inside method (also in parameter list)

Instance variable aka attribute or field
- Variable declared in class outside any method

“A declaration introduces an entity into a program and includes an identifier
(§3.8) that can be used in a name to refer to this entity.” // JLS 6.1

Variables and Memory

All variables exists in memory but local variables are
technically different from instance variables

- Local variables are located in an area called the stack.
This area is reused by all methods. Local variables only
exist during the execution of the method

- Instance variables (and the objects) are located in a
memory area called the heap, will exist as long as the
object exists

Primitive vs Reference Variable

Two very different kind of variables, holding primitive
types or reference types

56

int i = 56; Integer j = new Integer(56);

56

i is a primitive
type variable,
value in variable

j is a reference
type variable,
reference in
variable, value in
nameless object

Objects only accessible via
references

References references Objects

An object
(containing
another
reference)

A reference

A Java reference always references an object, never
another reference*

NEVER
like this

*) Possible in languages like C, C++

Scope

“In computer programming, the scope of an identifier is
the part of a computer program where the identifier, a
name that refers to some entity in the program, can be
used to find the referred entity. “ // Wikipedia

Many different scopes in Java, most well known is

// Java block scope

{

…

}

http://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html#jls-6.3

Shadowing*

If a declaration of a type (such as a member variable or a
parameter name) in a particular scope (such as an inner
class or a method definition) has the same name as
another declaration in the enclosing scope, then the
declaration shadows the declaration of the enclosing
scope. You cannot refer to a shadowed declaration by its
name alone

If many occurrences of same name Java normally uses
“the closest” declaration

Imperative vs Functional Variables

No statements in (pure) functional programming, no
ordering concerns (can use do-notation in Haskell)

In functional programming variables bound to values
(will never change)

In imperative programming variables (attributes) are
names of memory location, like boxes (will change
content)

State is Problematic

Put simple: State means we have many, many, ...
variables
● Holding the (partial) result and information how to

proceed with the calculation
● During execution the content will change
● Have to to put correct value of the correct kind in the

correct variable in the correct order...

... this is very hard in any non-trivial application.
● If any mistake program is in invalid state

In Fact it's Even Worse*

References can reference the same object. We possible
have shared state (the alias problem)

"If two variables contain references to the same object, the state of the
object can be modified using one variable's reference to the object, and
then the altered state can be observed through the reference in the other
variable." //JLS 4.3.1

SomeRefType i;

SomeRefType j;

j.setValue(...); // Will affect i !!!

Assignments

Always : Value (content) is copied from right side variable
to left side variable (location)

int i = 4;
int j;
// After this we have 2 4's
j = i;

4 4

i j

copy

Integer i = 4;
Integer j;
//After this we have 2
//references
j = i;

ji

4

copy

A variable can act as a left value (a location to store
something) or a right value, the value (content) of the
variable

Call by Value

When calling methods values are also copied, i.e. call by
value. If references copied there are implications ...

Date d = new Date();
o. doIt(d)

public void doIt(Date d)
{

d.set(...);
}

d

d
25/6

c
o
p
y

Object
outside
method
accessible

Out Parameters*

Normally method parameters should be
"read only" (some put final on params)
● If not, document (i.e. "Call will modify argument...")
● Confusing if caller uses reference after method call,

invisible state change
● If need more return values, create object to return

(avoid outparam as return)

... ok usage
● Passing an array/Collection to be manipulated by

method is ok (sorting, …)

By Value or by Reference*

The possibility of "reference or not" have impact on the
semantics of the program (the meaning)

Value semantics (by value), values copied/compared
● No shared state
Reference semantics (by reference), references
copied/compared
● Shared state

Recurring question: Is this by value or by reference?

Example: By Value or By Reference

Integer i = new Integer(4)

Integer j = new Integer(4)

if(i == j){

}

False by reference
semantics

int i = 4

int j = 4

if(i == j){

}

True by value semantics

How about this?

if (i <= j){

}

Why References?

There’s a lot of copying going on!

If using primitive type variable possible many bytes to
copy (assume an image as a primitive type, many MBs to
pass around)

Copying a reference in Java is 32 or 64 bits (regardless of
size of object). Much more efficient

Equality

A fundamental question is when two objects are equal
(identical)
- By value or by reference?

Default in Java: By reference

More later...

Side Effects*

Side effect = In addition to compute a value something
more happens (state modified)

Heavy use of side effects in imperative programming

List<Integer> is = …

// Get a value (b) and modify list (state change)

boolean b = is.add(123);

// Assignment mainly used for side effect

Referential Transparency*

// Always 0 in functional programming

putStrLn(f(123) - f(123))

// In imperative OO ???

System.out.println(o.f(123) - o.f(123))

Imperative languages are not referentially transparent (i.
e. not always same result for same argument)
● Because of possible side effects
● Makes it hard to reason about imperative code

Mutator and Accessors

Make explicit which methods have side effects

Accessors-method (getters)
● Never (or avoid) change state of object, no (avoid)

side effects
● Used to retrieve information (state or calculated)
● ... more later
Mutator-method (setters)
● Changes state of object
● Doesn’t return information (or avoid) about object

(possible other result, boolean common)

Imperative Style vs Declarative

//Naive Haskell power function (declarative)

pow a 0 = 1

pow a b = a * pow a (b-1)

// Same in imperative style

public int pow(int a, int b){

 int result = 1; int i = 0; // Bad style

 while(i < b){

result *= a;

 i++;

 }

 return result;

}

Describe step
by step.
How to prove
correctness of
this?

Like an
equation.
How to prove
correctness of
this?

Declarative Style Proof

Prove: pow a b = ab

By induction

● Base: pow a 0 = 1 = ab (b = 0)
● Assume: pow a b = ab (b > 0)

Show: pow a b+1 = ab+1

 pow a b+1 = a * pow a ((b+1) -1) =

 a * pow a b = a * ab = ab+1

Invariants

“In computer science, an invariant is a condition that can
be relied upon to be true during execution of a program,
or during some portion of it. It is a logical assertion that is
held to always be true during a certain phase of
execution. For example, a loop invariant is a condition
that is true at the beginning and end of every execution
of a loop.” // Wikipedia

Invariants tells us that something is fixed, we don’t need
to check it all the time ...

http://en.wikipedia.org/wiki/Logical_assertion
http://en.wikipedia.org/wiki/Loop_invariant

Imperative Style Proof*

Prove: pow(a,b) = ab

By use of loop invariants. Show invariant is true prior to
first iteration

● If it's true before an iteration show it's true before next

● At termination deduce result (or something stronger)
from (the true) invariant (an implication)

Imperative Style Proof, cont

Invariant: i <= b && result == ai

// If b == 0 trivially true, assume b > 0

public int pow(int a, int b){

 int result = 1; int i = 0;

while(i < b){

 result *= a;

 i++;

 }

 return result;

}

Invariant true prior to first iteration
i < b && i == 0 && result == 1 =>
i <= b && result == ai

Assume invariant true before iteration.
result *= a; => result == a(i+1) (inv. false)
i++; (inv. true)
Invariant true after loop

At termination (invariant still holds): i <= b && result == ai && !(i < b)
=> i == b && result == ai => result == ab

Hard Parts of Imperative Proofs

The negation of the guard (i >= b) and the invariant
should imply (=>) the desired outcome (result == ab)
● How to find invariant
● How to keep invariant but eventually terminate the

loop (how to eventually get the guard false)?

Limitations of Imperative Style Proof

Very tedious, have to prove each statement

No side effects allowed
● No instance variables

Must have single entry and exit point
● No break, continue or return

And more...

Declarative Style in Imperative
Language*
// Java going declarative

public int powR(int a, int b){

if(b == 0){

 return 1;

 }else{

 return a * powR(a, b-1);

 }

}

Possible but ...
● Watch out for StackOverflowException
● Should prefer tail recursion (powR not tail recursive)
● Even so; Tail call optimization possible not supported

(depends on JVM/JIT)

Tail Recursion

// Tail recursive version of pow, must init result to 1

// Accumulator parameter holding the result

public int powTail(int a, int b, int result){

if(b == 0){

 return result;

 }else{

 // Tail recursive, nothing to do after call returns

return powTail(a, b-1, result * a);

 }

}

If tail call optimization, this should run as fast as
imperative version and no StackOverflowException

Tail Recursion to Imperative Style

Tail recursion easy to convert to imperative loop

public f(x) {

if (p(x)){

return g(x);

} else{

return f(h(x));

}

}

public f(x) {

while (!p(x)) {

x = h(x);

}

return g(x);

}

If many base cases => negate disjunction of base cases

We run h(x) possible
many times and finally
g(x) on result

Proving Tail Recursion

As demonstrated tail recursion is a loop...

... so sadly have to use invariants for the accumulator
parameter hard again

Proof vs Reasoning

Imperative proofs quickly becomes very complicated ...

... but using the techniques for informal reasoning is
useful
● Will gain understanding
● Will improve code
● If completely impossible to imagine any kind of proof

when inspecting the code ... rework it!
● Use natural language for reasoning

Testing

Proving difficult, tedious, ...
Reasoning informally using proof techniques possible...

...other attempt: Testing...

"Program testing can be a very effective way to show the
presence of bugs, but it is hopelessly inadequate for
showing their absence." //E. Dijkstra

Unit Testing

Testing the smallest units (parts) of the program
● I.e. we test classes
● If method private, normally not in test. If in need,

change to public and back (bad.., just for now)
● If method void, need to inspect state (possible extra

method getNNN())

JUnit*

Test framework for Java
● We have a class to test (class under test, CUT)
● Write another "test"-class, testing all (public) methods

in CUT
○ Test class ideally has one test method for each

method in CUT
○ In test methods we put assertions (boolean

expressions)
● Let JUnit run the test class

○ Test passes if assertion holds
○ JUnit will report

● Should be possible to automate tests (test suites)

http://junit.org/
http://junit.org/

Organizing Test Code

Always keep test code separate from application code
● Use Test Packages folder in NetBean
● Use same package structure as application, more to

come...

Code Coverage

"Code coverage is a measure used in software testing. It
describes the degree to which the source code of a
program has been tested." //Wikipedia

Possible to see how much of code is run during tests,
high percentage good (90% or more)

Many tools, JaCoCo, plugin for NetBeans (install, see
README in sample code

http://wiki.netbeans.org/MavenCodeCoverage

Other Benefits of Testing

● All passed tests should pass after any modification,
confidence in doing changes (refactoring), just re-run
the tests!

● Documentation, use very descriptive names for test
methods

NOTE: Testing is a complicated "art", we'll just scratch the
surface

Linked Data Structures

We'll use a lot of linked structures (i.e. collections of
objects connected by references)

5 7 13 2

Node-object
(so need a
Node class)

A linked list
with
positive
integers
(attribute of
type int in
nodes)

"next" reference
(an attribute of
type Node in
object)

The Node Class

// Class for objects used in a linked data structure

public class Node {

private int data;

private Node next; // The next reference

// Better to set data also, this is just for now

public Node(Node next){

this.next = next;

}

// set/get methods

}

The List Class

// Class for managing the linked Node-structure

public class List {

// Reference to the first node, all we need

private Node head;

public void add(){ // Insert first

Node n = new Node(head);

head = n;

}

}

List

Traversing a Linked List*

5 7 13 2

Node pos = head; // Init pointer
while(pos != null){

// Do something with node
// Move pointer to next
pos = pos.next;

}

Node head;
//A single variable

Can't change head
variable, if so whole
structure lost
(should be final)

Node objects

Node pos; // Need an extra "pointer reference", a single variable

pos == null

Trees*

Another linked data structure

7

5

99 2

19

58

root (parent == null)

parent of

child of

node

"left"-reference

children == null

"right"-reference

A Node Class for Trees

// Class for nodes in a tree

public class Node {

// References to other nodes in tree

private Node parent;

private Node left;

private Node right;

// set/get methods

}

Count Nodes in Tree

// In Tree class

public int countNodes(){ // Method to get going

return countNodesR(root);

}

// Declarative style counting nodes (imperative hard...).

private int countNodesR(Node node) {

if(node == null){

return 0;

}else {

return 1 + countNodesR(node.left) +

 countNodesR(node.
right);

}

}

Summary

● We are doing imperative OO-programming which
implies state (and statements)

● State is very complex
● References makes it even harder (also different

semantics)
● Proving imperative programs is hard

○ Declarative more natural

● We try to reason informally using ideas from the
presented proof techniques

● An alternative to proofs is testing
● Linked data structures are collections of connected

objects

