C URRTICUILTUM M O D U L E SEI-CM-26

Carnegie Mellon University
—— Software Engineering Institute

Understanding
Program
Dependencies

Norman Wilde
University of West Florida

August 1990

Approved for public release.
Distribution unlimited.



Preface

A key to program understanding is unravelling the interrelationships of
program components. This module discusses the different methods and
tools that aid a programmer in answering the questions: “How does this
system fit together?” and “If I change this component, what other compo-
nents might be affected?”

In [Basili90], Victor Basili has said, “Most software systems are complex,
and modification requires a deep understanding of the functional and
non-functional requirements, the mapping of functions to system compo-
nents, and the interaction of components.” This module is about methods
and tools for the last of these problems, that is, the understanding of
interactions among program components.

Program components may be of many types, depending on the develop-
ment methodology and the programming language used. However, this
module will be restricted to those components that are found in code writ-
ten in almost all conventional procedural programming languages: data
items, data types, subprograms, and source files.

The module will present a classification of some of the main kinds of
dependencies between these components, a discussion of the main meth-
ods for discovering the dependencies starting from the code, and a
description of some of the ways that dependency information can be use-
fully presented to a programmer.

The general principles of tracing program dependencies are the same
whether one is considering relationships in a large software system con-
taining many (executable) programs, in a single program composed of
many subroutines, or within a single subroutine. We will accordingly use
the term “program dependencies” to refer to relationships at all three
levels.

Since program dependencies can be complex, many software tools have
been developed to help programmers comprehend them. Most of the

SEI-CM-26 Understanding Program Dependencies

Capsule
Description

Scope



Philosophy

methodologies that will be mentioned in this module have tool support,
either a research prototype or more fully developed commercial tools.
Although some tools are mentioned in the module, there is no implication
that these are the only ones, or the best ones, available. Readers who are
interested in finding tools for a specific problem or environment might
consult some of the survey articles or tool directories that have been pub-
lished. Some of these are referenced in the bibliography.

There are many reasons why analysis of program dependencies may be
necessary. One good way to learn good coding practices is by reading
existing code and observing how it is structured. Similarly, in designing a
new system it may be useful to study the structure and relationships of
existing systems. Program dependencies are also important in tasks such
as parallelization, in which programmers must determine which calcula-
tions can take place simultaneously [Cowell90].

Undoubtedly the most common reason for trying to understand a program
is that it needs to be changed. The maintenance phase of the software life
cycle is almost universally found to be the most expensive in terms of pro-
grammer time; probably the largest fraction of that time is spent trying to
analyze the program that needs to be maintained [Corbi89]. Component
dependencies must be traced in order to find which components need to be
changed and, later, to confirm that there are no undesired side effects of
the change.

The best aid to program understanding is a human being who has experi-
ence with the system. People are much better than any existing tools for
understanding the meanings of relationships and for knowing which ones
are relevant to any particular problem. However, as systems grow in
scale and lifetime, few organizations can afford to rely indefinitely on the
availability of “the person who knows everything.”

When available human knowledge is not sufficient, there are tools and
methodologies that can provide substantial assistance; the availability
and use of these tools in programming shops is still much less than one
would expect given the high costs of maintenance. This module provides
background on the kinds of methodologies and tools that currently exist or
that are becoming available in the hope of encouraging more widespread
use.

Some reservations should be expressed about software analysis tools in
general. First, while tools are likely to be a lot better than unaided hand
analysis of code, there are still many cases in which tools either fail to
capture some dependencies or else show relationships that do not really
exist. Humans need to understand the strengths and weaknesses of the
tools they use. Second, many organizations have found that simply pur-
chasing tools will not automatically lead to increased productivity.

Understanding Program Dependencies SEI-CM-26



Leadership, training, and, most important, a well-defined software
change process are needed to get any real benefit.

I would like to thank Lionel Deimel, Daniel Berry, Maribeth Carpenter,
Mark Ardis, and Nancy Mead for many useful comments and suggestions
during the development of this module, and particularly Gary Ford for his
guidance and assistance in keeping the work focused. Sheila Rosenthal
and Karola Fuchs in the SEI Library were extremely helpful in identify-
ing and tracking down documents; without their efforts, the module could
not have been prepared in twice the time.

Comments on this module are solicited, and may be sent to the SEI
Software Engineering Curriculum Project or to the author:

Norman Wilde

Division of Computer Science
University of West Florida
Pensacola, Florida 32514-5750

SEI-CM-26 Understanding Program Dependencies

Acknowledge-
ments

Author’s
Address






Understanding
Program
Dependencies

1. Program Understanding
1.1. Theories of Program Understanding
1.2. Experiments and Practice in Program Understanding

2. Classification of Program Dependencies
2.1. Data Item Dependencies
2.2. Data Type Dependencies
2.3. Subprogram Dependencies
2.4. Source File Dependencies
2.5. Source Location Relationships
2.6. Additional Classes of Dependencies

3. Finding Program Dependencies
3.1. Textual Search
3.2. Cross-Referencing
3.3. Tracing Indirect Dependencies
3.4. Data Flow Methods

4. Some Practical Problems in Dependency Tracing
4.1. Preprocessors and Macro Substitution
4.2. Arrays, Pointers, and Table-Driven Designs
4.3. Efficiency Considerations
4.4. Human Considerations

5. Visualizing Program Dependencies
5.1. Annotated Listings
5.2. Constrained Queries
5.3. Browsers
5.4. Clustering
5.5. The Grid Mechanism

6. Commercial Tools for Maintenance

7. Reverse Engineering of Software

SEI-CM-26 Understanding Program Dependencies

Outline



Annotated
Outline

1. Program Understanding

It is, of course, extremely dangerous to change a program that is not well under-
stood. Modifications made in ignorance are very likely to cause subtle errors that
will come back to haunt the programmer later or, at a minimum, will degrade the
original program and make future maintenance more difficult.

On the other hand, complete understanding of a large system is an unrealistic
goal. Rather, a maintainer must identify those program components that are
important for a specific change and focus on understanding them well enough to
safely make the modification. It is hard to define exactly how programmers go
about achieving this level of understanding or even how they know when it has
been achieved.

As systems age and grow, the difficulty of tracing dependencies almost certainly
increases. For example, Belady and Lehman, in their classic study of the evolu-
tion of OS/360, show the growth in both the number of system modules and the
number of modules that had to be handled in each new release [Belady76].

Software engineering theory might indicate that programmers should make use
of system documentation for program understanding instead of relying only on
program code. However, conversations with practicing maintainers indicate that
they often have a deep distrust of all documentation that is separate from the
code and frequently will not even pay much attention to program comments.
When questioned about this seemingly negative attitude, they can usually relate
experiences with misleading documentation and with the high cost of believing in
it.

1.1. Theories of Program Understanding

Most descriptions of the program understanding process take either a top-
down or bottom-up approach [Corbi89]. Brooks has recognized that the
essence of high-level program understanding is not just in understanding the
code, but also in the mappings between the program and its problem domain.
To understand an inventory program, programmers may need to know some-
thing about warehouse operations, shipping orders, and the like; and they
must be able to find how these things are reflected in the code. A program-
mer formulates hypotheses about the program in a top-down manner.
Certain features in the code, such as variable names, are “beacons” that
signal what is going on and allow hypotheses to be confirmed and refined
[Brooks83].

Basili and Mills [Basili82] give a more formal method using a bottom-up
approach, the goal being to derive from the code a specification that gives the
function computed by the program. The method involves decomposing the
program into smaller prime programs and determining the function computed
by each prime. Then the functions are recombined to show the functions of
larger program parts until the function of the whole program has been found.

Both of these methods indicate that understanding includes a process of
gradually collecting information from the code of a program. This informa-
tion is then used by the programmer to form higher level abstractions that
explicate the program’s design; these can be used in planning program modi-
fications (Figure 1).

To gather the necessary information, the programmer must usually trace
code dependencies. For instance, starting from a question such as “Why is
RECCTR being incremented here?” the maintainer will first look up the
declaration of the variable, then find places where it is used, and then find
places where its value is set. Perhaps in one of these investigations the
programmer will find that RECCTR is being set equal to NUMREC, and this
fact will set off another chain of inquiries. Eventually enough information

Understanding Program Dependencies SEI-CM-26



Design Abstractions

Information Extracted from
the Code

RECCTR
declared

NUMREC
declared

NUMREC
used

RECCTR:=
NUMREC

RECCTR (
increment
I RECCTR
RECCTR set
used
RECCTR
used

NUMREC
set

NUMREC
used

RECCTR
set

Program Code with Dependencies

Figure 1. A typical process of program understanding

will be accumulated to allow the programmer to understand how RECCTR
fits into the design abstractions of the overall program. While it is very diffi-
cult to describe all the mental processes that go on during the analysis, it is
clear that tracing through the chains of dependencies is a large part of the
work. Cleveland gives an interesting illustrative scenario of a programmer
trying to track down a bug by searching through different views of the
program code [Cleveland89].

1.2. Experiments and Practice in Program Understanding

Some experimental work on program comprehension has been reported in the
literature. For example, Letovsky and Soloway have done experiments using
the “thinking-aloud protocol” in which maintainers describe the mental pro-
cesses they are using as they perform a task [Letovsky86]. The authors found
that a major obstacle to program understanding is the presence of delocalized

SEI-CM-26 Understanding Program Dependencies



plans, in which a programmer uses a technique that is implemented in code
distributed throughout the program instead of being located in one place.

Weiser hypothesizes that program slices (described in Section 3.4) may be
used by programmers in code reading, especially in reading code to find a bug
[Weiser82]. The work of Weiser and that of Letovsky and Soloway support
the need for methods to pull together information about dependent program
components that may not be contiguous in the code.

Fay and Holmes provide suggestions on how, in practice, one may attack the
problem of modifying a program whose documentation is deficient [Fay85].

2. Classification of Program Dependencies

A software system may be structured in many different ways depending on the
problem domain, design methodology, and implementation environment. But
almost all software systems have components that are identifiable as data items,
data types, subprograms, or source files. From the point of view of the main-
tainer, there is a dependency between two components if a change to one may
have an impact that will require changes to the other.

2.1. Data Item Dependencies

Data items include variables, records, and structures. There is a dependency
between two data items if the value held in the first affects or is used to com-
pute the value held in the second. Most languages provide a rich collection of
ways in which data dependencies may be established, ranging from assign-
ment statements and computations to parameter matching and storage
sharing.

2.2. Data Type Dependencies

Almost all languages have some built-in data types, and many allow the pro-
grammer to define additional ones, often by combining or modifying other
types. Individual data items are usually declared to be of a specified data
type. If the definition of a type is changed, attention must be paid to each
such item and to each other type that has used it.

2.3. Subprogram Dependencies

We use the term subprogram in this module for those system components
that actually carry out processing activities on the data. They may be
functions in C, functions and procedures in Pascal, or even complete called
programs in COBOL. Subprograms are related to each other by calling
dependencies; if a subprogram is modified, the maintainer must be careful to
check for effects on all the routines that call it. Subprograms also have
dependencies with the data items that they use as input or that they
compute.

2.4. Source File Dependencies

In many languages, source files may copy or include other source files.
Physical copying is a frequent method of sharing system declarations such as
data types or interface definitions between several software components. The
real dependencies are not between the files, but rather between the compo-
nents; the files are really just a packaging mechanism. However, in practice
it is often more convenient to think in terms of dependencies between files
because the files are the unit that is identifiable to the operating system or to
the compiler.

A well-known problem is the difficulty of making sure that the executable
code for a system is suitably updated when changes are made to just a few of

Understanding Program Dependencies SEI-CM-26



the source files. Utilities such as make allow the programmer to specify
source file dependencies that the utility will then use to rebuild the whole
system as needed [Feldman79, Babich86].

2.5. Source Location Relationships

As has been mentioned, source files are a physical packaging mechanism for
software components. Packaging does not normally create a dependency
according to our definition since changing a component does not in any real
sense require changes in the file. However, there is certainly a relationship
that is of concern to a maintainer. Without extensive system experience or
adequate tools, maintenance programmers are likely to spend a fairly large
portion of their time trying to locate the files in which a given data type or
subprogram is defined or used.

2.6. Additional Classes of Dependencies

Language designers have often provided other components for structuring
software, such as the objects in C++ or the packages in Ada. The dependen-
cies between these components can sometimes be handled by simple extrapo-
lation from the methods discussed in this module, but such language features
may also introduce complications that go beyond its scope. (See, for example,
[Taenzer89] for a description of some of the complex dependencies in object-
oriented languages.)

Certain software domains may contribute additional kinds of dependencies.
Real-time software is a case in point since very troublesome effects may be
introduced through timing relationships [Collofello85]. For example, a modi-
fication to one subprogram may cause it to consume more processor time,
thus leading to a failure in an apparently independent task.

Finding Program Dependencies

3.1. Textual Search

Textual search is the simplest way to try to identify program dependencies.
If one wants to find all the places where the data item INPUT_RECORD is
changed, one solution is to search all the source code for the string
“INPUT_RECORD”. Most text editors have commands for performing such
searches on files. In many systems, utility programs exist for searching
through many files at once, such as the grep utility on UNIX systems.

Textual search is useful but not very discriminating. Though we may only be
interested in places where the data item is changed, we will also find places
where it is used, written, mentioned in comments, etc. We may also find
similarly named items (e.g., MASTER_INPUT_RECORD). In a large pro-
gram written in a language that has some concept of identifier scope, there
may even be many, totally different items with the same name.

3.2. Cross-Referencing

Cross-referencers seem to have appeared originally as a compiler option to
aid in navigating around the code for a single executable module. Most
compilers provide some kind of facility for listing where each identifier is
declared and where it is used.

Some cross-referencers simply give the source file location of each reference
and thus really provide location relationships, not dependencies. However,
many are based on a more detailed parsing of the code and truly cross-
reference the components, not their locations. Thus they can list, for
example, all the subroutines that use global variable Z or all the variables
declared to be of type X.

SEI-CM-26 Understanding Program Dependencies



A problem with both textual search and many cross-referencing systems is
that they depend on a specific name to represent the component being sought.
In many contexts, however, there may be aliases for the component, created
using storage sharing or pointers. A classic example comes from FORTRAN;
if RECCTR appears in a COMMON area in one subprogram, then other
subprograms that use the same area may access it under quite a different
name. The user must check each occurrence of the reference to see if an alias
is being established.

When a system becomes large, a simple listing of cross-references is likely to
be unmanageable. Tools exist that scan all the system code—sometimes
including components in different languages—and build cross-reference
databases (e.g., [Chen86, Foster87]). The databases may be quite sophisti-
cated so that they can distinguish different components having the same
name and can identify how the component appears (for example, as a
declaration, as input or output to a subroutine, mentioned in a comment, etc.)
Listings may then be generated from the database, or online database queries
may be made as necessary during a program understanding session.

3.3. Tracing Indirect Dependencies

One difficulty with both text search and cross-referencing systems is that
they give only direct dependencies. However, maintainers often need to trace
chains of dependencies to identify or understand a program function. For
example, a typical dependency understanding task may require finding all
places where TRACK_TABLE is searched, preparatory to making a change in
its structure to improve efficiency. A query could show eight places where
TRACK_TABLE is used. But in investigating the first of these, the pro-
grammer might discover that a pointer to the table is generated and passed
to a subprogram as a parameter that is now named TAB_PTR. Inside the
subprogram, TAB_PTR is passed to yet another subprogram where its name
is again different, and so on. At this point, the maintainer would already be
trying to track three levels of dependency without moving beyond the first
reference to the table!

A solution to this problem is to consider the dependency relationships as a
graph that can then be displayed or printed out in whole or in part [Wilde89].
This approach would seem to be generally applicable, but it has become
common only for tools that show the calling hierarchy or structure chart of a
program, which is traditionally represented as a tree or an indented listing
[Kuhn87].

3.4. Data Flow Methods

Two methods of tracing program dependencies use detailed data flow analysis
to define program subsets that are dependent. Program slicing answers
questions such as, “What does the value of X at line 45 depend upon?” A
program slice is an executable program found by removing from the original
program those statements that have no effect on the specified value
[Weiser81]. Slicing seems to be a very useful technique for detailed debug-
ging, though it may be less useful in understanding broad program structure.

The ripple effect has been defined as “the phenomena by which changes to
one program area have tendencies to be felt in other program areas” [Yau78].
Ripple effect analysis generally tries to answer the reverse of the program
slicing question, “If the computation of Y at line 18 is changed, what other
variables are affected and at which points in the program?” The answer is
found by tracing data flow forward through the program from the point of the
change [Yau78, Yau84].

Understanding Program Dependencies SEI-CM-26



Prototype research tools for both program slicing and ripple effect analysis
have existed for some time, and there is some recent research on improving
algorithms and extending the use of these techniques [Horwitz90, Yau88,
Lyle88, Collofello88]. However, only a few commercial tools incorporating
these methods seem to be on the market.

4. Some Practical Problems in Dependency Tracing

Most methods for finding program dependencies have practical problems that
may limit the usefulness of a tool in a particular circumstance. There seems to be
no systematic analysis in the literature of “what works when,” so the following
list of pitfalls is not exhaustive.

4.1. Preprocessors and Macro Substitution

Some programming languages, for example C and many assemblers, have a
preprocessing phase in which macro substitutions are made to transform the
input source code into a program that is ready for the compiler. Such substi-
tutions complicate any analysis that goes much beyond textual search. Since
the original source file may not, in fact, be a syntactically correct program, it
is difficult to parse it reliably for purposes of data flow analysis. A solution
often adopted is to analyze the code only after it has passed through the pre-
processor. Unfortunately, some identifiers will be eliminated and others
introduced by this process, so the output of the analysis may look unfamiliar
to the user.

4.2. Arrays, Pointers, and Table-Driven Designs

Arrays and pointers may make it difficult for an analysis tool to determine
exactly what is going on within a program. A reference to A[J] may be access-
ing any value within an array—or even outside it if bounds checking is not
enforced. Pointer references may be similarly indeterminate. Many tools will
try to state every dependency that might exist, thus overloading the user with
excessive output that needs to be checked by hand. Good design practices,
such as tables to define input and output records or arrays to define state
machines, may create programs that can be analyzed only by very specialized
tools.

4.3. Efficiency Considerations

Precise description and analysis of even a moderate-sized computer program
may involve processing a surprising amount of information. In the current
state of the art, large memory requirements and slow response time may pose
significant barriers to the use of analysis tools on large-scale software
systems.

4.4. Human Considerations

Maintainers, like most human beings, tend to be fairly conservative about
their work. Many organizations have found that simply purchasing a tool is
far from sufficient; the tool may be ignored by its intended users unless
appropriate leadership, training, and motivation are present.

5. Visualizing Program Dependencies

Once dependencies have been found, by whatever means, the problem remains of
presenting them to programmers in a way that improves their understanding of
the program. The problem is not trivial because of the very large number of
dependencies that may be present in a software system. For example, if a tool
simply lays out the components as a graph on the screen with arcs representing
dependencies, the result will usually be a spider web with little discernable struc-

SEI-CM-26 Understanding Program Dependencies



ture. As another example, [Keuffel90] reports feeding a 138 line program into
one tool, which responded with a 27,000 line report telling him everything the
tool thought he needed to know about the program!

While no completely satisfactory solution to the visualization problem exists,
there are many visualization methods that have been proposed and used with
some success.

5.1. Annotated Listings

Despite the arrival of wide-screen workstations, program listings are still a
very useful and widely used tool of the practical programmer. Some analysis
tools enhance listings by annotating them with dependency information
printed in the margins. Thus the procedure division of a Cobol program may
be annotated with cross-references to the places variables are declared in the
data division and the data division annotated with references to places vari-
ables are used in the procedure division. An interesting extension is the
“book paradigm” suggested by Oman and Cook as a way of formatting code
for easier understanding [Oman90al].

5.2. Constrained Queries

Some systems allow users to specify a query, stating exactly which kinds of
dependencies they want to look at [Chen86, Wilde89, Rajlich88]. Basically
this hands the problem back to the users. If they are experienced enough to
be able to specify exactly what they want, then the tool will help them in
program understanding tasks. If not, they may get so much output that the
tool becomes useless.

5.3. Browsers

Browsers typically show the user a window into the code, along with a fairly
small amount of dependency information indicating other program compo-
nents that may be of interest. The user proceeds from one location to the
next, acquiring information about the program that he or she can build into
an overall understanding of its operation. For example, Cleveland has
described one such browser, which allows the user to view the program from
several different aspects [Cleveland89]. Related call graphs, control flow
graphs, data usage, and data flow graphs can be displayed, along with the
original code. (See [Oman90b] for several other examples of browsing tools.)

5.4. Clustering

One approach to the visualization problem for large systems is to use cluster-
ing methods to group components. Ideally, the clusters will turn out to be
meaningful subsystems that enable programmers to get an overview of the
software by looking at high-level subsystem dependencies instead of low-level
component dependencies. Hutchens and Basili present an approach using
hierarchical clustering methods based on the data bindings that link subpro-
grams [Hutchens85]. Schwanke and Platoff describe an alternative system
that groups components having similar intercomponent dependencies
[Schwanke89].

5.5. The Grid Mechanism

Ossher has defined the grid mechanism, a graphical notation for describing
the structure of large software systems and the interactions of their parts.
The grid specifies which parts are allowed to interact with which others, so
that designers can specify which units are intended to be “hidden” in the sys-
tem. They can also specify exceptions to the overall structure, such as those
that occur when a program is tuned for efficiency. While the grid cannot, at

Understanding Program Dependencies SEI-CM-26



present, be generated automatically from the code, a grid description created
by hand can be checked against the code for consistency [Ossher89].

6. Commercial Tools for Maintenance

Many commercial tools have been developed as an aid to software maintenance.
Trade publications often contain reviews of these tools (see, for example,
[Keuffel90]), and several surveys are available as an aid to finding a tool for a
particular problem and environment [Federal86, Holbrook87, Zvegintzov89].

7. Reverse Engineering of Software

An active and exciting current research area is the development of methodologies
for the reverse engineering of software. Reverse engineering is the process of ana-
lyzing a subject system to:

¢ identify the system’s components and their interrelationships.

* create representations of the system in another form or at a higher level of
abstraction.

Reverse engineering usually includes some kind of semiautomatic attempt to help
the programmer go directly from the code level of Figure 1 (page 3) to the abstrac-
tion level. Most reverse engineering tools are still in the research stage, however,
so they will not be discussed in detail in this module. The reader may want to
consult the January 1990 special issue of IEEE Software for several papers show-
ing the current state of this research.

SEI-CM-26 Understanding Program Dependencies



Prerequisites

Recommended
Module Uses

10

Teaching
Considerations

Program dependencies may be discussed in any classroom setting in
which the students have a basic background in writing and debugging
non-trivial programs; this level of familiarity would normally be found, for
instance, in students who have had an introductory programming course
plus a data structures course. Of course, the material will be more
meaningful to students who have some experience with systems of greater
size and complexity, either in industry or in a course that has a large pro-
gramming project.

In a Software Engineering Lecture Course

Objectives and Content: In a typical software engineering course, some-
times as little as one class hour can be devoted to maintenance topics. In
this case the instructor can hope to do little more than make students
aware of the importance of the problems associated with program under-
standing and maintenance. The paper by Corbi provides good background
for preparing a lecture on this topic [Corbi89].

However, program understanding, its importance in maintenance, and
relevant methodologies would seem to merit a somewhat deeper study
even in such a course. If two to three class hours are available, the follow-
ing objectives may be reasonable.

At the end of the unit a student should:
* Know the importance of maintenance within the life cycle and the
importance of program understanding in maintenance.

* Understand and be able to explain the problem of comprehending a
program’s design when important pieces of the puzzle are not
contiguous in the code (i.e., the “delocalized plans” problem).

* Know of the existence of tools for textual search and cross-referencing
of code.

Understanding Program Dependencies SEI-CM-26



If more time is available, the content could be expanded in one of two
ways. First, more advanced methods could be discussed, such as program
slicing and ripple analysis. Alternatively, a small code-reading exercise
could be given, requiring students to use available tools to answer ques-
tions about some moderately-sized program. For example, students might
be given a program of about 500-1000 lines and asked to identify the
purpose of a particular variable or locate where a particular task is being
carried out. Deimel and Makoid give examples of such exercises
[Deimel85].

Resources: As an overview of program understanding, one good starting
point is the paper by Corbi [Corbi89], which may be used by the instructor
in preparing lectures or assigned to the students for reading. A second
good reference is the Letovsky and Soloway paper [Letovsky86], which
clearly explains the concept of a “delocalized plan” and the problems such
plans cause.

For students who have little practical experience, it may be useful to pro-
vide some exposure to the realities of a maintenance task. The paper by
Fay and Holmes [Fay85] could provide useful reading.

An exercise that may be interesting is to ask students to review one or
more tools, based on papers such as the ones in this module’s bibliography
or on product literature from commercial vendors. In one limited experi-
ence, I have found that students who have experienced the drudgery of
maintenance can easily grasp the benefits of tool support; for an inexperi-
enced class, however, this sort of exercise may be less useful.

In a Maintenance-Oriented Project Course

Objectives and Content: Maintenance-oriented projects are increasingly
replacing or supplementing traditional development-oriented projects in
computer science and software engineering education [Tomayko89,
Cornelius89, Morris88]. Such project courses attempt to redress the
imbalance in favor of development in the rest of the curriculum and
expose students to problems more closely approximating real world expe-
rience. Within the context of these courses, some time could be devoted to
lectures on the theory and practice of program understanding, and tools
could be provided for student use. Morris provided his students with an
initial small bug-finding exercise to familiarize them with the available
software tools and found that they thereafter “... continued to use them
throughout the course without further prompting.”

The objectives in such a course would include those of the lecture course
described in the previous section, but also the student should be able to:

* Analyze an existing system written by someone else, in order to
identify a bug or plan an enhancement.

e Apply at least one or two tools selected by the instructor as support
for this program analysis task.

SEI-CM-26 Understanding Program Dependencies

11



Project
Suggestions

12

Exercises may start at a simple level. For example, students could be
asked to locate where a particular variable is set or used. Further exer-
cises could then go on to more complex problems in which students are
required to identify those components in which some particular function
is being carried out, and finally to problems involving actual bug fixes and
enhancements to the program.

Resources: The papers mentioned at the beginning of this section are a
useful source of ideas on the organization of a maintenance-oriented
project course. They provide useful advice on the selection of a software
artifact to study, a possible sequence of exercises, etc. In addition,
[Engle89] provides an Ada program with associated documentation that
can be used as raw material for such a course. The notes provided with
the program include a series of suggested exercises ranging from develop-
ing documentation and management plans through code reviews and
actual system modifications.

The specification and development of a program understanding tool can
be a challenging and interesting project for a student team in a project
course. The possibilities are extensive and can range from quite easy
projects to systems of considerable difficulty.

Cross-referencing tools are fairly simple to build and can be appropriate
for lower level courses, though the interface design may still prove chal-
lenging. Instructors may want to consider going beyond the more com-
mon programming languages; a recent student project supervised by the
author specified a dependency analysis tool for spreadsheets.

For advanced courses, the design of a program slicer or ripple analyzer
will require some library research on algorithms and a good deal of care-
ful analysis. Some of the problems in handling interprocedural data flow,
pointers, and arrays are far from completely resolved. Students should be
thoroughly conversant with the language being analyzed; it may be pru-
dent to start with a language subset rather than attempting to handle all
constructs of a major programming language.

Understanding Program Dependencies SEI-CM-26



Bibliography

Ambras88

Ambras, James P., Berlin, Lucy M., Chiarelli, Mark L., Foster, Alan
L., O'Day, Vicki, and Splitter, Randolph N. “MicroScope: An

Integrated Program Analysis Toolset.” Hewlett-Packard Journal
(Aug. 1988), 71-83.

This article describes a tool that analyzes Lisp programs. “The current sys-
tem includes a static component that analyzes the cross-reference structure of
a program and a dynamic component that lets users monitor the run-time
behavior of the program.”

Babich86

Babich, Wayne A. Software Configuration Management: Coordination
for Team Productivity Reading, Mass.: Addison-Wesley, 1986.

Chapter 7 provides a brief but clear overview of the make utility and of source
file dependencies. (See [Feldman79] for a more detailed treatment)

Basili82

Basili, Victor R., and Mills, Harlan D. “Understanding and
Documenting Programs.” IEEE Transactions on Software Engineering
SE-8, 3 (May 1982), 270-283.

Abstract: This paper reports on an experiment in trying to understand an
unfamiliar program of some complexity and to record the authors’ under-
standing of it. The goal was to simulate a practicing programmer in a
program maintenance environment using the techniques of program design
adapted to program understanding and documentation; that is, given a
program, a specification and correctness proof were developed for the program.
The approach points out the value of correctness proof ideas in guiding the
discovery process. Toward this end, a variety of techniques were used: direct
cognition for smaller parts, discovering and verifying loop invariants for
larger program parts, and functions determined by additional analysis for
larger program parts. An indeterminate bounded variable was introduced
into the program documentation to summarize the effect of several program
variables and simplify the proof of correctness.

Basili90

Basili, Victor. “Viewing Maintenance as Reuse-Oriented Software
Development.” IEEE Software 7, 1 (Jan. 1990), 19-25.

SEI-CM-26 Understanding Program Dependencies



Belady76

Belady, L., and Lehman, M. “A Model of Large Program
Development.” IBM Systems Journal 3 (1976), 225-252.

Abstract: Discussed are observations made on the development of OS /360
and its subsequent enhancements and releases. Some modeling approaches to
organizing these observations are also presented.

This is the classic paper on the ways systems grow and evolve. The paper
proposes the following laws of program evolution, which are relevant back-
ground for software maintenance and program understanding:

“1. Law of continuing change: A system that is used undergoes continuing
change until it is judged more cost effective to freeze and recreate it.

“2. Law of increasing entropy: The entropy of a system (its unstructured-
ness) increases with time, unless specific work is executed to maintain or

reduce it.”
Brooks83
Brooks, Ruven. “Towards a Theory of the Comprehension of

Computer Programs.” Int. J. Man-Machine Studies 18 (1983), 543-554.

Abstract: A sufficiency theory is presented of the process by which a computer
programmer attempts to comprehend a program. The theory is intended to
explain four sources of variation in behavior on this task: the kind of computa-
tion the program performs, the intrinsic properties of the program text, such as
language and documentation, the reason for which the documentation is
needed, and the differences among the individuals performing the task. The
starting point for the theory is an analysis of the structure of the knowledge
required when a program is comprehended which views the knowledge as
being organized into distinct domains which bridge between the original prob-
lem and the final problem. The program comprehension process is one of
reconstructing knowledge about these domains and the relationship among
them. This reconstruction process is theorized to be a top-down, hypothesis
driven one in which an initially vague and general hypothesis is refined and
elaborated based on information extracted from the program text and other
documentation.

This paper, together perhaps with [Basili82], would be the best source of a
theoretical framework for teaching about program understanding.

Chen86

Chen, Yih-Farn, and Ramamoorthy, C. V. The C Information
Abstractor. Report No. UCB/CSD 86/300, Computer Science Division
(EECS), University of California, Berkeley, Calif., June 1986.

Abstract: Program understanding is one of the most time-consuming
processes in software maintenance. This is partially due to the human inabil-
ity to memorize complex interrelations among the software entities of a large
software system. The situation worsens when the programs are not written by
the software maintainers and little documentation is available. The basic
idea in information abstraction is to extract relational information among the
software entities of programs, store the information in a database, and make it
available to users in a form that can be easily understood. We have imple-

Understanding Program Dependencies SEI-CM-26



mented an Information Abstractor to extract relational information from C
programs and store the information into a program database. High level
access utilities are provided so that program maintainers or developers can
easily retrieve the information they need for understanding the software.
Besides program understanding, we found that the availability of the program
database can also promote the research in four software engineering areas:
multiple software views, software reusability, software metrics, and software
restructuring.

A good example of a cross-reference database tool.

Chikofsky90

Chikofsky, Elliot, and Cross, James, II. “Reverse Engineering and
Design Recovery: A Taxonomy.” IEEE Software 7, 1 (Jan. 1990), 13-
17.

Cleveland89

Cleveland, L. “A Program Understanding Support Environment.”
IBM Systems Journal 28, 2 (1989), 324-344.

Abstract: Software maintenance represents the largest cost element in the life
of a software system, and the process of understanding the software system
utilizes 50 percent of the time spent on software maintenance. Thus there is a
need for tools to aid the program understanding task. The tool described in
this paper—Program UNderstanding Support environment (PUNS)-provides
the needed environment. Here the program understanding task is supported
with multiple views of the program and a simple strategy for moving between
views and exploring a particular view in depth. PUNS consists of a repository
component that loads and manages a repository of information about the
program to be understood and a user interface component that presents the
information in the repository, utilizing graphics to emphasize the relationships
and allowing the user to move among the pieces of information quickly and
easily.

This is an interesting paper that shows clearly how sophisticated browsers
can be used to support maintenance tasks. It provides a good scenario of
browser use.

Collofello85

Collofello, James, and McBride, David. “Maintenance Performance
Ripple Effect Analysis for Real-time Ada Programs.” Proc. Compsac
85, Chicago, IEEE Computer Society, October 1985, 17-23.

Abstract: The complexity and expense of performing software maintenance
on large-scale programs is well known. Since large-scale programs often
possess both a set of functional and performance requirements, it is important
for maintenance personnel to consider the ramifications of a proposed modifi-
cation from both a functional and a performance perspective.

This paper describes the possible ripple effect of program modifications during
the maintenance phase on the performance of a program and presents a tech-
nique for the analysis of this performance ripple effect in large-scale Ada
programs. The significance of this type of maintenance technique is its contri-
bution to an engineering approach to large-scale software maintenance. By
predicting the repercussions generated by software modifications, it can aid

SEI-CM-26 Understanding Program Dependencies



maintenance personnel in their selection of modification alternatives. It can
also help in the retesting phase to determine whether any performance
requirements have been violated by the maintenance activity.

Collofello88
Collofello, James, and Orn, Mikael. “A Practical Software
Maintenance Environment.” Proc. Conference on Software

Maintenance - 1988, Phoenix, Arizona, IEEE Computer Society,
October 1988, 45-51.

Abstract: This paper provides an update of a research project at Arizona
State University whose objective is the development of a practical software
maintenance environment. The existing functional capabilities of the envi-
ronment are described as well as research currently in progress.

The environment described in this paper works on Pascal code and includes
tools for generating structure charts, displaying import and export data from
each module, accessing text documentation and module code, and performing
ripple effect analysis. The ripple analysis tool is particularly interesting
since it makes use of semantic information to localize ripple effects more
precisely.

Corbi89

Corbi, T. A. “Program Understanding: Challenge for the 1990s.” IBM
Systems Journal 28, 2 (1989), 294-306.

Abstract: In the Program Understanding Project at IBM’s Research Division,
work began in late 1986 on tools which could help programmers in two key
areas: static analysis (reading the code) and dynamic analysis (running the
code). The work is reported in the companion papers by Cleveland and by
Pazel in this issue. The history and background which motivated and which
led to the start of this research on tools to assist programmers in understand-
ing existing program code is reported here.

Corbi provides a very good overview of program understanding and its
importance in maintaining old systems. It is good background for the
instructor or may be assigned for student reading.

Cornelius89

Cornelius, B. J., Munro, M., Robson, D. J. “An Approach to Software
Maintenance Education.” Software Engineering Journal 4, 4 (July
1989), 233-236

Abstract: The majority of courses in software engineering concentrate on
educating students in the methods applicable to the development stage of the
software lifecycle. Software maintenance is recognized as the most expensive
phase of the software lifecycle, and yet it receives very little attention from
those involved in software engineering education. This paper describes a novel
approach to software maintenance education which is being undertaken at the
University of Durham.

This is a good paper for instructors to read in preparing a maintenance-based
project for students.

Understanding Program Dependencies SEI-CM-26



Cowell90

Cowell, W. R., and Thompson, C. P. “Tools to aid in discovering paral-
lelism and localizing arithmetic in Fortran programs.” Software
Practice and Experience 20, 1 (Jan. 1990), 25-47.

Abstract: We describe a collection of software tools that analyze and trans-
form Fortran programs. The analysis tools detect parallelism in blocks of code
and are primarily intended to aid in adapting existing programs to execute on
multiprocessors. The transformation tools are aimed at eliminating data
dependencies, thereby introducing parallelism, and at localizing arithmetic in
registers, of primary interest in adapting programs to execute on machines
that can be memory bound (common for machines with vector architecture).

Deimel85

Deimel, Lionel, Jr., and Makoid, Lois. “Developing Program Reading
Comprehension Tests for the Computer Science Classroom.”
Computers in Education, Duncan and Harris (eds.), Elsevier Science
Publishers, 1985, 535-540

Abstract: A methodology for constructing program reading comprehension
tests is discussed and illustrated. Emphasis is on multiple-choice tests used
with realistic reading passages. Item writing employs a classification of
question types developed by the authors and a program comprehension model
developed by Ruven Brooks is recommended.

This paper provides guidance on developing simple code-reading exercises
and tests. It includes several examples.

Engle89

Engle, C. B., Jr., Ford, G., and Korson, T. Software Maintenance
Exercises for a Software Engineering Project Course. Educational
Materials CMU/SEI-89-EM-1, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, Pa., Feb. 1989.

Abstract: Software maintenance is an important task in the software indus-
try and thus an important part of the education of a software engineer. It has
been neglected in education partly because of the difficulty of having to pro-
duce and then maintain a software system within a semester course. This
report provides an operational software system of 10,000 lines of Ada and
several exercises based on that system. Concepts such as configuration man-
agement, regression testing, code reviews, and stepwise abstraction can be
taught with these exercises.

This is the first SEI package of educational materials. The package includes
documentation and source code for an Ada system. The exercises provide a
good basis for organizing a maintenance-oriented student project.

Fay85

Fay, Sandra, and Holmes, Denise. “Help! I Have to Update an
Undocumented Program.” Proc. Conference on Software Maintenance
- 1985, Washington, D. C., IEEE Computer Society, November 1985,
194-202.

SEI-CM-26 Understanding Program Dependencies



Abstract: This paper discusses a method for documenting and maintaining
an undocumented program. The paper provides guidance to junior personnel
and management of areas that can alleviate the situation.

The paper specifically addresses: First impressions; Resources, who and what;
Approaches, Schedule assessment.

This paper is directed to those people in industry who are faced with docu-
menting an undocumented program. However, it is also written with the hope
that this will give the person supervising the maintainer a clearer view of the
help which can be given by providing the resources and time necessary to
maintain a program in the proper manner.

An excellent paper to give students; it obviously represents considerable
experience in handling both real world code and real world managers!

Federal86

Software Aids and Tool Survey. Federal Software Management
Support Center, Office of Software Development and Information
Technology, Report OIT/FSMC-86/002, 1986. Available from the U.S.
Government Printing Office, as GPO 022-002-00106-2.

A very extensive classification and survey of tools, but with no evaluation.

Feldman79

Feldman, Stuart I. “Make - A Program for Maintaining Computer
Programs.” Software Practice and Experience 9, 4 (Apr. 1979), 255-
265.

Summary: Good programmers break their projects into a number of pieces,
each to be processed or compiled by a different chain of programs. After a set
of changes is made, the series of actions that must be taken can be quite com-
plex, and costly errors are frequently made. This paper describes a program
that can keep track of the relationships between parts of a program and issue
the commands needed to make the parts consistent after changes are made.
Make has been in use on UNIX systems since 1975. The underlying idea is
quite simple and can be adapted to many other environments.

This paper describes source file dependencies and the make utility for han-
dling selective system rebuilds. It would be appropriate as a starting point
for students who will be using such a tool, though they may also need to con-
sult local manuals since some variants of make now exist.

Foster87

Foster, John, and Munro, Malcolm. “A Documentation Method Based
on Cross-Referencing.” Proc. Conference on Software Maintenance -
1987, Austin, Texas, IEEE Computer Society, September 1987, 181-
185.

Abstract: Much of the work of the maintenance programmer involves the
investigation of program operation by the examination of the source code itself.
The purpose of such examination is to discover information about the program
and its components: the information gained is potentially valuable to future
maintenance work as well as to the immediate task in hand. Unfortunately,

Understanding Program Dependencies SEI-CM-26



the urgency of the typical maintenance task is such that the information will
rarely be recorded in an adequate form, or even at all.

The paper describes a method which can be used to document the results of
maintenance investigations and which is currently under implementation as a
toolset. The core of the toolset (and the method) is an advanced cross-reference
and indexing tool for source and documentation. The method allows a listing
of program components and functional attributes to be constructed incremen-
tally, under the control of an interactive interface. Despite the interactive
nature of the main interface, the method is suitable for use under a strict
Quality Assurance environment, and the manner of achieving this is

described.

An example of a tool (developed by British Telecom) suitable for use on large-
scale, multi-language systems. This is a good paper for students who wish to
get an idea of the sorts of tools that are feasible.

Holbrook87

Holbrook, H. B., and Thebaut, S. M. A Survey of Software
Maintenance Tools That Enhance Program Understanding. Report
SERC-TR-9-F, Software Engineering Research Center, Computer and
Information Sciences Department, University of Florida, Gainesville,
Fla., 1987.

Abstract: This report summarizes the results of a recent survey of commer-
cially available software tools which purport to aid in the task of program
understanding. The effort was undertaken in connection with the SERC
“Maintenance Assistant” research project at the University of Florida during
the summer of 1987, and resulted in the identification of 116 tools. Most of the
tools identified provide insight into the program structures and operations
considered important for program comprehension.

Another listing and classification of commercial tools.

Horwitz90

Horwitz, Susan, Reps, Thomas, Binkley, David. “Interprocedural
Slicing Using Dependence Graphs.” ACM Transactions on
Programming Languages and Systems 12, 1 (Jan. 1990), 26-60.

Abstract: The notion of a program slice, originally introduced by Mark
Weiser, is useful in program debugging, automatic parallelization, and pro-
gram integration. A slice of a program is taken with respect to a program
point p and a variable x; the slice consists of all statements of the program
that might affect the value of x at point p. The paper concerns the problem of
interprocedural slicing-generating a slice of an entire program, where the slice
crosses the boundaries of procedure calls. To solve this problem, we introduce
a new kind of graph to represent programs, called a system dependence
graph, which extends previous dependence representations to incorporate col-
lections of procedures (with procedure calls) rather than just monolithic
programs. QOur main result is an algorithm for interprocedural slicing that
uses the new representation. (It should be noted that our work concerns a
somewhat restricted kind of slice; rather than permitting a program to be
sliced with respect to program point p and an arbitrary variable, a slice must
be taken with respect to a variable that is defined or used at p.)

SEI-CM-26 Understanding Program Dependencies



The chief difficulty in interprocedural slicing is correctly accounting for the
calling context of a called procedure. To handle this problem, system depen-
dence graphs include some data dependence edges that represent transitive
dependences due to the effects of procedure calls, in addition to the conven-
tional direct-dependence edges. These edges are constructed with the aid of an
auxiliary structure that represents calling and parameter-linkage relation-
ships. This structure takes the form of an attribute grammar. The step of
computing the required transitive-dependence edges is reduced to the construc-
tion of the subordinate characteristic graphs for the grammar’s nonterminals.

This paper would be appropriate for a group of advanced students interested
in building their own slicer.

Hutchens85

Hutchens, David, and Basili, Victor. “System Structure Analysis:
Clustering with Data Bindings.” IEEE Transactions on Software
Engineering SE-11, 8 (Aug. 1985), 749-757.

Abstract: This paper examines the use of cluster analysis as a tool for system
modularization. Several clustering techniques are discussed and used on two
mediume-sized systems and a group of small projects. The small projects are
presented because they provide examples (that will fit into a paper) of certain
types of phenomena. Data bindings between the routines of the system provide
the basis for the bindings. It appears that the clustering of data bindings pro-
vides a meaningful view of system modularization.

Keuffel90

Keuffel, Warren. “Making Sense of it All: Groupware for Re-
Engineering.” Computer Language 7, 6 (June 1990), 93-101.

Abstract: This review covers a number of products that share a common
focus: documenting existing code so that it can be understood and maintained
by any member of a group. Some of these products are unique; some offer over-
lapping functions. All are worth considering.

An example of a product review from the trade press, this article focuses
mainly on tools for PC code.

Kuhn87

Kuhn, D. Richard. “A Source Code Analyzer for Maintenance.” Proc.
Conference on Software Maintenance - 1987, Austin, Texas, IEEE
Computer Society, September 1987, 176-180.

Abstract: This paper describes a tool that reads all C source files in a direc-
tory and produces information useful for program maintenance. The tool
generates a call tree, a call matrix, and the transitive closure of the matrix,
which shows indirect relationships between routines. It computes some
measures that may help estimate the complexity of the program being main-
tained, and also identifies subsystems (possibly nested) within the program.
The paper describes the information provided and shows how it saves time in
understanding the program to be modified, estimating the complexity of the
change, and performing regression testing on the modified program. The tool
is in the public domain and will be available through the National Technical
Information Service (NTIS).

Understanding Program Dependencies SEI-CM-26



An example of a tool that produces calling hierarchy charts. The tool is
available from the paper’s author and may be appropriate for classroom use.

Letovsky86

Letovsky, Stanley, and Soloway, Elliot “Delocalized Plans and
Program Comprehension.” IEEE Software 3, 3 (May 1986), 41-49.

A very interesting description of the problems programmers encounter in
understanding code. Several very illustrative examples are based on
experience observing programmers as they work. There is also a discussion
of the implications for better program documentation. This is a good paper to
give students to get them thinking about how to read code and how to write
code that will be readable.

Lyle88

Lyle, J. R., and Gallagher, K. B. “Using Program Decomposition to
Guide Modifications.” Proc. Conference on Software Maintenance -
1988, Phoenix Arizona, IEEE Computer Society, October 1988, 265-
269.

Abstract: We use data flow techniques to form a notion of direct sum decom-
position for programs. The decomposition yields a method and guidelines for
“software surgeons” (maintainers) to use so that changes can be assured to be
completely contained in the modules under consideration and that there are no
undetected “linkages” between the modified and the unmodified code. Thus,
the impact of small changes can be gauged. The decomposition can also be
used to limit the amount of testing required to assure that the change is cor-
rect; in fact, under suitable conditions modification testing will be required
only for the changed code. Moreover, if these hypotheses are violated, the
modifier can be virtually assured that proposed changes will have a wider
impact than that which is contemplated.

Morris88

Morris, Robert A. “An Unorthodox Approach to Undergraduate
Software Engineering Education.” Computing Systems 1, 4 (Fall 1988)
405-419

Abstract: Software engineering principles can be taught to inexperienced
undergraduates by substituting code reading, maintenance, and enhancement
for the more usual beginning-to-end team project. The study of mail reading
systems of intermediate size proves a suitable environment for the study of
complex systems.

This is another useful paper for the instructor who is planning a
maintenance-oriented student project.

Oman90a

Oman, Paul, and Cook, Curtis. “The Book Paradigm for Improved
Maintenance.” IEEE Software 7, 1 (Jan. 1990), 39-45

This paper describes the “book paradigm,” a way of formatting the listing of a
program like a book in order to facilitate program understanding and main-
tenance. The book includes a preface (header comments), chapters, a table of

SEI-CM-26 Understanding Program Dependencies



contents, and an index (cross-reference). It is generated semi-automatically
by a program called Bookmaker. The authors mention two experiments that
show that students using the book do maintenance tasks faster and with
fewer errors.

This is a readable paper for students. A good student project might be orga-
nized around writing a version of the Bookmaker program for some special-
ized environment.

Oman90b
Oman, Paul. “Maintenance Tools.” IEEE Software 7, 3 (May 1990), 59-65

This survey, part of the IEEE Software special “tools fair” issue, provides
brief descriptions of several tools. The subsections are:

Objective-C Browser details class structures
Vifor transforms code skeletons to graphs

Seels aids maintenance with code-block focus
Battle Map, Act show code structure, complexity
Grasp/Ada uses control structure

Expert Dataflow and Static Analysis tool
Surgeon’s Assistant limits side effects
Dependency Analysis Tool Set prototype

Ossher89

Ossher, Harold. “A Case Study in Structure Specification: A Grid
Description of Scribe.” IEEE Transactions on Software Engineering
15, 11 (Nov. 1989), 1397-1416.

Abstract: The grid mechanism is a graphical notation for describing the
structure of software systems and for specifying and enforcing structuring
disciplines. It is intended to present complex structures in a clear and intu-
itive manner, yet it is formal: consistency between a system and a grid specifi-
cation can be checked automatically. This enables one to examine a clear,
graphical description of system structure with confidence that it accurately
reflects the actual structure of the system.

This paper describes a case study in which the grid mechanism was used to
describe the structure of Scribe, a document processing system in widespread
use. The structure description is presented and explained in some detail, and
the effectiveness of the grid at specifying the important structural features of
Scribe is discussed. Conclusions drawn from the case study include the
following:

1) The grid succeeds in its objective of presenting complex structures clearly.

2) A grid specification forms a suitable basis for a narrative explanation of
system structure.

3) Some detailed improvements would further enhance the expressiveness of
the grid.

4) Environmental support is essential for serious use of the grid.

This is a good, but detailed, description of the grid mechanism and will prob-
ably be of most interest only to advanced students.

Understanding Program Dependencies SEI-CM-26



Rajlich88

Rajlich, Vaclav, Damaskinos, Nicholas, Linos, Panagiotis, Silva, Joao,
and Khorshid, Wafa. “Visual Support for Programming-in-the-large.”
Proc. Conference on Software Maintenance - 1988, Phoenix Arizona,
IEEE Computer Society, October 1988, 92-99.

Abstract: In this paper a brief description of the VIFOR (Visual Interactive
FORtran) environment is given. VIFOR is based on a simple, but effective
data model of Fortran programs. The model contains three entity classes and
three relation classes only. Programs can be displayed and edited in two
forms: the traditional one (i.e. code) and in the visual form. VIFOR contains
transformation tools for both directions, i.e. from code to visual form and
from visual form to skeletons of code. Hence it is suitable for reverse engineer-
ing and maintenance of existing code. Specially designed browsers implement
the graphical interface.

An example of the cross-reference database approach to tool construction,
combined with a browsing interface.

Schwanke89

Schwanke, R. W., and Platoff, M. A. “Cross References are Features.”
Proc. ACM 2nd Intl. Workshop on Software Configuration
Management, Princeton, N. J., October 1989, 86-95.

This paper describes a clustering technique for software dependencies used in
the ARCH “architect’s assistant” system being developed at Siemens. The
method identifies components to be clustered based on their “shared neigh-
bors.” For example, two subroutines will be clustered together if they are
called by the same routines or if they call the same routines, instead of clus-
tering together routines that call each other. Applications are shown for
summarizing a call graph, splitting an include file, and improving modular-
ity.

Taenzer89

Taenzer, David, Ganti, Murthy, Podar, Sunil. “Object-Oriented
Software Reuse: The Yo-Yo Problem”. Journal of Object-Oriented
Programming 2, 3 (Sept. 1989), 30-35.

This paper provides an interesting analysis of the complex dependencies cre-
ated by polymorphism and method inheritance in object-oriented languages
such as Objective-C. It may temper the reader’s enthusiasm for this particu-
lar software technology!

Tomayko89

Tomayko, J. E. “Teaching Maintenance Using Large Software
Artifacts.” Software Engineering Education. SEI Conference 1989,
Norman E. Gibbs, ed. Lecture Notes in Computer Science 376, Berlin:
Springer-Verlag, 1989, 3-15.

Abstract: A method for teaching software maintenance at the graduate level
using software artifacts is described. Objectives, the syllabus, and assign-
ments are included in annotated form. A discussion of the actual events and
lessons learned in a prototype course is presented.

SEI-CM-26 Understanding Program Dependencies



Another paper useful for the instructor who is planning a maintenance-
oriented student project.

Weiser81

Weiser, Mark. “Program Slicing.” Proc. 5th Intl. Conference on
Software Engineering, San Diego, California, IEEE Computer Society,
March 1981, 439-449.

Abstract: Program slicing is a method used by experienced computer pro-
grammers for abstracting from programs. Starting from a subset of a
program’s behavior, slicing reduces that program to a minimal form which
still produces that behavior. The reduced program, called a “slice”, is an
independent program guaranteed to faithfully represent the original program
within the domain of the specified subset of behauvior.

Finding a slice is generally unsolvable. A dataflow algorithm is presented for
approximating slices when the behavior subset is specified as the values of a
set of variables at a statement. Experimental evidence is presented that these
slices are used by programmers during debugging. Experience with two
automatic slicing tools is summarized. New measures of program complexity
are suggested based on the organization of a program’s slices.

This paper is the original exposition of program slicing and is readable both
as a general introduction to slicing and as a detailed description of
algorithms.

Weiser82

Weiser, Mark. “Programmers Use Slices When Debugging.” Comm.
ACM 25,7 (July 1982), 446-452.

Abstract: Computer programmers break apart large programs into smaller
coherent pieces. Each of these pieces: functions, subroutines, modules, or
abstract datatypes, is usually a contiguous piece of program text. The experi-
ment reported here shows that programmers also routinely break programs
into one kind of coherent piece which is not contiguous. When debugging
unfamiliar programs programmers use program pieces called slices which are
sets of statements related by their flow of data. The statements in a slice are
not necessarily textually contiguous, but may be scattered through a program.

Wilde89

Wilde, Norman, Huitt, Ross, and Huitt, Scott. “Dependency Analysis
Tools: Reusable Components for Software Maintenance.” Proc.
Conference on Software Maintenance - 1989, Miami, Florida, IEEE
Computer Society, October 1989, 126-131.

Abstract: Software maintenance is costly because of the many complex inter-
relationships in a large software system; an understanding of these program
dependencies is fundamental to efficient software change. This paper
describes a general purpose toolset that is now being developed to capture and
analyze software dependencies. The tools are designed to serve as reusable
components. They may be used not only to aid programmers directly in
understanding programs but also as a basis from which other specialized tools
can be constructed.

Understanding Program Dependencies SEI-CM-26



The tools use the concept of a dependency graph as a basic abstraction to
simplify the understanding of software relationships. Definitional, calling,
functional and data-flow dependencies are analyzed. An external dependency
graph for each function is developed to encapsulate the effects of function calls.

Yau78

Yau, S. S., Collofello, J. S., and MacGregor, T. “Ripple Effect Analysis
of Software Maintenance.” Proc. Compsac 78, IEEE Computer
Society, 1978, 60-65.

Abstract: Maintenance of large-scale software systems is a complex and
expensive process. Large-scale software systems often possess both a set of
functional and performance requirements. Thus, it is important for mainte-
nance personnel to consider the ramifications of a proposed program modifica-
tion from both a functional and a performance perspective. In this paper the
ripple effect which results as a consequence of program modification will be
analyzed. A technique is developed to analyze this ripple effect from both func-
tional and performance perspectives. A figure-of-merit is then proposed to
estimate the complexity of program modification. This figure can be used as a
basis upon which various modifications can be evaluated.

This paper explains the basic concept of ripple analysis and shows how ripple
effects can be calculated.

Yau84

Yau, Stephen S. Methodology for Software Maintenance. Report
RADC-TR-83-262, Rome Air Development Center, Air Force Systems
Command, Griffiss Air Force Base, N. Y., February 1984.

Abstract: Improved techniques for specifying and implementing software
modifications were developed including logical ripple effect analysis, logical
and performance stability measures, and effective testing for software mainte-
nance. An experiment was performed to analyze stability measurements.

This is a quite extensive report on a project that involved constructing several
kinds of maintenance tools.

Yau88

Yau, Stephen S., and Liu, Sying-Syang. Some Approaches to Logical
Ripple Effect Analysis. Report SERC-TR-24-F, Software Engineering
Research Center, Computer and Information Sciences Department,
University of Florida, Gainesville, Fla., 1988.

This report presents improved algorithms for ripple effect analysis of a soft-
ware change.

Zvegintzov89
Software Maintenance Tools - Release 2.0. Zvegintzov, Nicholas,
editor. New York: Software Maintenance News, 1989.

This very good survey, which is updated from time to time, explains the use
of maintenance tools and surveys many of the current commercial offerings.

SEI-CM-26 Understanding Program Dependencies



26

The publication Software Maintenance News is also a good practitioner-
oriented source on current developments in software maintenance.

Understanding Program Dependencies SEI-CM-26



