
Parallelism
Slide Series 7

Content

Threads, Timers, TimerTasks
Atomic operations
Race conditions
Synchronization
Deadlock
Concurrent Collections
Swing, Swing Components and Swing thread
Blocking calls
Working threads

Review the Model

We're doing OOD/P that means ...

...build a model of something...

Things happens in the model, sometimes
they happens concurrently (the world seems
to be parallel?)
● Q: How to handle in model? A: Threads!

Threads

"...the Java virtual machine can support many threads of
execution at once. These threads independently execute
code that operates on values and objects residing in a
shared main memory." // JLS 17

"The behavior of threads, particularly when not correctly
synchronized [more to come], can be confusing and
counterintuitive."
// JLS 17

 Hmm.. this is an understatement..

Threads in Java Program

All Java programs have least one thread
(executing the main method)

If using a GUI there will automatically be
more threads, also if using a network, ...
● So normally a Java program is multithreaded, more to

come...

Usage of Thread in Course

● Timers, scheduled events running in own
thread

● Programming with Java Swing, threads
involved

● Long running tasks running in own thread

Programming with Threads

Complicated always try to avoid
● State changed concurrently! Very complex!
● Hard to debug, if stopping one thread other still runs
● Program doesn't (normally) run faster, have to switch

between threads, takes time (normally more threads
than processors)

You'll have a complete course in parallel programming in
the autumn... this is just what we need in the lab 2 and
some basic general knowledge!

Representing Threads

"Threads are represented by the Thread class. The only
way for a user to create a thread is to create an object of
this class [could be indirectly]; each thread is associated
with such an object". // JLS 17

Threads are low level, we will try to avoid the
explicit usage of
● We'll mostly use higher level classes (that will create

threads)
● ... but some knowledge needed...

Runnable

"The general contract of the method run is that it may
take any action whatsoever" // Javadoc

Thread TimerTask

Runnable
+ run(): void

MyTimerTaskMyRunnableClassMyTimerTask

SwingWorker

We use

Timer

Run by

Run
 by

Code to Run in Thread

The code to run in the thread is located in some class
implementing the Runnable interface (only method run())

public class MyThreadClass implements Runnable {
@Override
public void run(){

// Code to run in thread, when finished thread dies
}

}
// Create and start thread to run the code
Thread t = new Thread(new MyClass());
t.start(); // Will execute code in run-method in parallel

 // with the thread we're in

Example: Basic Thread*

// Starting three threads X, Y, Z implements Runnable
Thread t1 = new Thread(new X());
Thread t2 = new Thread(new Y());
t1.start();
t2.start();

// Z handles it's own thread (has Thread attribute)
new Z().start();

// t1.stop() is deprecated don't use
// To stop a thread you should break the loop in the
// run method (we don't need, we use higher level classes)

Thread Life Cycle*

Thread Life Cycle, cont

● New state: this is when the Thread object is first created by calling the constructor of the
Thread class. For example; Thread newThread = new (runnableObj);

● Runnable. After calling the start() method on the thread, it enters the runnable state. That
means it is ready to run or to go to some other states.

● Running state: a thread is in this state while its run() method is executing. During this state,
the thread can go to blocked state if it gets blocked or has to wait for other threads. When
the run() method finishes, this state ends.

● Blocked/waiting state: while running a thread can be put to sleep, interrupted or blocked by
other threads. There are many reasons why this may happen.

● Terminated /dead state: when a thread reaches this state, its life ends. It can never be
revived again. Normally, a thread enters this state because its run() method has ended.
However, a thread can also be terminated even before it is in the runnable state or during
the waiting state by calling stop() or suspense() on the thread. I don't suggest using any of
those methods to move a thread to its terminated state because those methods have been
deprecated by Java and are not thread safe.

Threads and Portability
Threads scheduler is part of operating system (OS)
The behaviour of the thread scheduler, thread priorities, and Thread.
yield are highly dependent on the Java Runtime implementation you
happen to be using. You cannot rely on them to define the logic of
your application (we will not use).

Physical memory

A running
Java
program

Atomic Operations

Some operations are by default guaranteed
to be "atomic" i.e. a thread will be able to
finish without any other thread interfering
● Single read/write of variable except long or double is

atomic (there is a class AtomicLong,...)

// Is this atomic?
x++;

Race Conditions*

All threads have own stack so local variables
no problem but...

... attributes shared
● What if many threads do non atomic reads/writes the

same attribute concurrently?
● Can't specify which thread will run, done by system,

imagine; random!
● Other benefit of immutable classes, they are thread

safe!

Race Conditions, cont

Race conditions occur when multiple threads perform
non-atomic operations (outcome depends of timing of
threads)
// Possible race condition
int x = 10;
x = x + 1

Thread A Thread B

read x (x == 10)

read x (x == 10)

x +1, write x (x == 11)

x + 1, write x (x == 11)
One update lost

Monitors

"Each object in Java is associated with a monitor, which a
thread can lock or unlock. Only one thread at a time may
hold a lock on a monitor. Any other threads attempting to
lock that monitor are blocked until they can obtain a lock
on that monitor. A thread t may lock a particular monitor
multiple times; each unlock reverses the effect of one
lock operation." // JLS 17

Synchronization

To avoid race condition we "synchronize" the
critical code sections by locking/unlocking
the monitor
● New keyword synchronized, use to "get the lock" (if

fail thread put into wait-set)
● Used on statement or method
● synchronized will turn a method or code block into an

atomic operation
● synchronized not part of method signature
● Constructors and initializers can't be synchronized

Synchronized Statements*

"The synchronized statement (§14.19) computes a reference to an object; it
then attempts to perform a lock action on that object's monitor and does
not proceed further until the lock action has successfully completed. After
the lock action has been performed, the body of the synchronized
statement is executed. If execution of the body is ever completed, either
normally or abruptly, an unlock action is automatically performed on that
same monitor."
// JLS 17

"Acquiring the lock associated with an object does not in itself prevent other
threads from accessing fields of the object or invoking un-synchronized
methods on the object".
// JLS 14.19

Synchronized Methods*

"A synchronized method (§8.4.3.6) automatically performs a lock action
when it is invoked; its body is not executed until the lock action has
successfully completed. If the method is an instance method, it locks the
monitor associated with the instance for which it was invoked (that is, the
object that will be known as "this" during execution of the body of the
method). If the method is static, it locks the monitor associated with the
Class object that represents the class in which the method is defined. If
execution of the method's body is ever completed, either normally or
abruptly, an unlock action is automatically performed on that same monitor."
// JLS 17

At un-lock scheduler choose any waiting thread to execute (assume
random)
Changes to shared memory not visible to other thread util thread leaves
synchronized method (or statement)

http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.3.6

Composing Thread Safe Methods*

Synchronization doesn't compose

// Assume both methods synchronized
o.doIt();
o.doOther(); // The sequence isn't thread safe albeit
 // both methods are

Deadlock*

If using too much synchronization threads
possible end up mutually waiting on each
other; Deadlock!
● Never call out to other object from synchronized

code, code (in other thread) possibly will call back,
deadlock

● A single thread can call synchronized methods on
same object from inside synchronized method

Other forms; Livelock, ...

Util Timer and TimerTask*

To perform some action at fixed interval
running in own thread
● Implement a subclass of TimerTask. The run method

contains the code that performs the task.
● Create an object of type java.util.Timer class
● Create an object of TimerTask sub class
● Use timer object to schedule the sub class object for

execution
● To stop task: Invoke cancel on the timer

Utility methods in Thread*

Thread.sleep()
"Thread.sleep causes the currently executing thread to sleep (temporarily
cease execution) for the specified duration, subject to the precision and
accuracy of system timers and schedulers. The thread does not lose
ownership of any monitors, and resumption of execution will depend on
scheduling and the availability of processors on which to execute the
thread."
//JLS 17

Thread.currentThread()
Returns a reference to the currently executing thread object.

Concurrent Collections*

Possible to delegate thread safety if methods use thread
safe Collections
● ConcurrentHashMap - A highly concurrent, high-performance

ConcurrentMap implementation based on a hash table. This
implementation never blocks when performing retrievals and allows the
client to select the concurrency level for updates. It is intended as a
drop-in replacement for Hashtable: in addition to implementing
ConcurrentMap, it supports all of the "legacy" methods peculiar to
Hashtable.

● ConcurrentLinkedQueue , ConcurrentSkipListSet,

Have to read Javadoc carefully for the meaning of thread safe (have to
synchronize iterators)

Java Swing

A GUI widget toolkit (GUI framework)
● Descendant of the Java Advanced Window Toolkit

(AWT). Some things (like event handling) remains
from AWT (java.awt.event.* package)

● Many components
● Uses an "internal" MVC architecture
● Pluggable look-n-feel
● Single threaded (not thread safe)
● Programming Swing is a subtopic in it's own right

There are other frameworks : SWT (used by Eclipse), SwingX, JavaFX,
Apache Pivot, Qt Jambi, ...

Aside: Swing is Part of the Java SE
Platform (there's also Java EE, ...)

Swing Components

Swing Internal MVC*
Model is the data for the
component (customizable)

UI Delegate (class ComponentUI)
is responsible for getting data
from the Model and rendering it to
the screen (can be replaced
runtime, i.e. change look-n-feel)

Component generally coordinates
the actions of the Model and
Delegate, while also acting as glue
to the AWT windowing system

Also: Complex components can use custom
Renderers

UI Delegate

Model Component

Any JComponent is constructed like this

Use F3 in Eclipse to inspect

Swing Model Interfaces

Swing Default Models*

Used default by corresponding component
(implements previous interfaces)
● DefaultComboBoxModel, DefaultListModel

DefaultTableModel, DefaultTreeModel,
DefaultTableColumnModel, ...

● If creating complex components normally create
custom model for efficiency and possible other
issues (i.e. SpreadSheet)

Swing Components Listeners

Swing components uses Observer pattern

// In JComponent
protected EventListenerList listenerList = new EventListenerList();

// In AbstractButton extends JComponent
public void addItemListener(ItemListener l) {
 listenerList.add(ItemListener.class, l);
}

protected void fireStateChanged() {

 Object[] listeners = listenerList.getListenerList();
 for (int i = listeners.length-2; i>=0; i-=2) {
 if (listeners[i]==ChangeListener.class) {
 if (changeEvent == null)
 changeEvent = new ChangeEvent(this);
 ((ChangeListener)listeners[i+1]).stateChanged(changeEvent);
 }

 }

}

Swing Pluggable Look-n-feel*

Because of MVC-design for components it's
possible to render components in very
different styles.
● "Look" refers to the appearance of GUI widgets (more

formally, JComponents) and "feel" refers to the way
the widgets behave

● Some available L&F's
● Have to install look and feel on all computers..??

http://geeknizer.com/best-java-swing-look-and-feel-themes-professional-casual-top-10/

Blocking Calls*

Blocking calls
● A method called in a thread will block the thread until

method finished (returns)
● If method very slow (long running task), rest of

program have to wait (example: GUI will freeze if
downloading big file)

Why is Swing Single Threaded?

"Multithreaded GUI frameworks tend to be particularly susceptible to
deadlock, partially because of the unfortunate interaction between input
event processing and any sensible object-oriented modeling of GUI
components. Actions initiated by the user tend to "bubble up" from the OS to
the application a mouse click is detected by the OS, is turned into a "mouse
click" event by the toolkit, and is eventually delivered to an application
listener as a higher level event such as a "button pressed" event. On the
other hand, application-initiated actions "bubble down" from the application
to the OS changing the background color of a component originates in the
application and is dispatched to a specific component class and eventually
into the OS for rendering. Combining this tendency for activities to access
the same GUI objects in the opposite order with the requirement of making
each object thread-safe yields a recipe for inconsistent lock ordering, which
leads to deadlock. And this is exactly what nearly every GUI toolkit
development effort rediscovered through experience." //Web
Most (all?) GUI frameworks are single threaded: Qt, NextStep, MacOS Cocoa,
X Window, Windows(?), ...

Swing Single Thread Rule

"Once a Swing component has been realized, all code that might affect or
depend on the state of that component should be executed in the event-
dispatching thread [=EDT = the Swing thread].
Realized means that the component's paint [paintComponent] method has
been or might be called. A Swing component that's a top-level window is
realized by having setVisible(true), show, or pack called on it. Once a
window is realized, all of the components that it contains are realized.
Another way to realize a Component is to add it to a Container that's already
realized."

This is "The Swing Single Thread Rule"

Swing Thread Handling

A Swing programmer must handle
● Initial threads, the threads that execute initial

application code (thread created automatically)
● The event dispatch thread, where all event-handling

code/painting is executed (thread created
automatically)

● Worker threads, also known as background threads,
where time-consuming background tasks are
executed (created by us using higher level classes)

EDT: Create the GUI*

// Assume main-thread running here

// Causes run() to be executed in the EDT (after any
pending // events)
SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 createAndShowGUI();
 }
});
// main thread continues before call returned
(asynchronous)

// If using SwingUtilities.invokeAndWait main waits until
// run finished

InvokeLater vs InvokeAndWait

● InvokeLater is non blocking call while InvokeAndWait will block until
task is completed.

● If run method of Runnable target throws an Exception then in case of
invokeLater EDT threads unwinds while in case of invokeAndWait
exception is caught and rethrown as InvocationTargetException.

● InvokeLater can be safely called from Event Dispatcher thread while if
you call invokeAndWait from EDT thread you will get an error because
as per java documentation of invokeAndWait it clearly says that "this
request will be processed only after all pending events" and if you call
this from EDT this will become one of pending event so its a deadlock
because caller of InvokeAndWait is waiting for completion of
invokeAndWait while EDT is waiting for caller of InvokeAndWait.

● InvokeLater is more flexible in terms of user interaction because it just
adds the task in queue and allow user to interact with system while
invokeAndWait is preffered way to update the GUI from application
thread.

EDT: Event Handling*

EDT uses simple queue for events, any event
will be processed in incoming order
● If many events queue may filled up
● If slow handling of events queue may fill up

Event Handling should be as quick as possible
● If slow use a worker thread, more later...

EDT: Painting*

There is a default painting mechanism ... if not
satisfied override paintComponent()
● Parameter is: Graphics g, a graphical toolbox

○ Methods, drawLine(), drawRectangle(), setColor(),
fillRect(), ...

● Sometimes possible need to call repaint() or validate()
to force painting(?)

The Graphics Object

"A Graphics object encapsulates state information needed for the basic
rendering operations that Java supports. This state information includes the
following properties: The Component object on which to draw, translation
origin for rendering and clipping coordinate, the current clip, the current
color, the current font, the current logical pixel operation function (XOR or
Paint), the current XOR alternation color"

Javadoc for paintComponent()
"If you override this (paintComponent) in a subclass you should not make
permanent changes to the passed in Graphics (i.e. not use it as an out
parameter). For example, you should not alter the clip Rectangle or modify
the transform. If you need to do these operations you may find it easier to
create a new Graphics from the passed in Graphics and manipulate it."

Swing GUI Animations*

If cool GUI is on wishlist...
● ...combine paintComponent(Graphics g)..
● with a Swing timer (will run in EDT)

Note: Games are usually not implemented
like this.

Worker Threads*

"SwingWorker is designed for situations where you need
to have a long running task run in a background thread
and provide updates to the UI either when done, or while
processing." // Javadoc

Use javax.swing.SwingWorker<T>

Worker Threads, cont

There are three threads involved in the life cycle of a SwingWorker :
● Current thread: The execute() method is called on this thread. It

schedules SwingWorker for the execution on a worker thread and
returns immediately. One can wait for the SwingWorker to complete
using the get methods.

● Worker thread: The doInBackground() method is called on this thread.
This is where all background activities should happen.

● Event Dispatch Thread: All Swing related activities occur on this thread.
SwingWorker invokes the process and done() methods and notifies any
PropertyChangeListeners on this thread.

Often, the Current thread is the Event Dispatch Thread.

http://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html#execute()
http://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html#get()
http://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html#doInBackground()
http://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html#process(java.util.List)
http://docs.oracle.com/javase/7/docs/api/javax/swing/SwingWorker.html#done()

Switching Threads*

From GUI to backend and, if needed, back to
GUI
new SwingWorker(){...}

From backend to GUI (network threads)
SwingUtilities.invokeLater(...)

Summary

Using threads and related problems;
synchronization race conditions, deadlock
Usage of threads in Java Swing applications

