
Dependencies
Slide Series 4

Content

Modifiability, extensibility and testability
Information hiding
Design decisions
Single responsibility and Dependency inversion
principles
Associations
Separating construction and usage
Law of demeter
Modules
Abstract classes, inner local classes
Iterator

Modifiability, Extensibility and
Testability

Must be possible to modify program
● We will not get it right on the first try, must be able to

modify

Programs must be able to extend
● Many (most) program will expand, adding new

features. Must be able to grow

Must be possible to test program
● Testing is our main method to ensure quality

Impact of Dependencies

If too much dependencies impossible to
modify, extend or test!

Any modification will ripple through the
whole application!

No isolated parts to test, everything is
dependent (a big ball of mud, spaghetti code)

Causes of Dependencies

Different parts of application knows (and
uses) too much from other parts

Part of application have too many
responsibilities

Information Hiding

"David Parnas first introduced the concept of information
hiding around 1972. He argued that the primary criteria
for system modularization should concern the hiding of
critical design decisions. He stressed hiding "difficult
design decisions or design decisions which are likely to
change."

"Hiding information in that manner isolates clients from
requiring intimate knowledge of the design to us a
module, and from the effects of changing"

 The fundamental principle

Some Critical Design Decisions

Typical things to hide
● Data representations
● Algorithms - e.g, sorting or searching techniques
● Input and Output Formats
● Ordering of low-level operations, process sequences
● Separating policy and mechanism

○ Separate interfaces from implementations
● Selection of third party software
● Platform/machine dependencies, e.g., byte-ordering, character codes
● ...

Many design decisions emanate from the problem, the
problem has (hidden) dependencies.

Encapsulation

Concrete technique to hide the data
representation i.e. bundling hidden data and
operations on data
● Create a class with appropriate methods to work on

the hidden data representation
● Info hiding violated if class has set/get methods for

all attributes

Of course by default we always use private for attributes

Basic Class Dependencies

Associations between types

Usage of other types as parameters and
return values

Associations

Dependencies via attributes
public class A{
 private B b;
}

public class B{
 private A a;
}

public class A{
 private B b;
}

A B

public class B{
 private A a;
}

AB

A B
public class A{
 private List as;
}

A B

*

Mutual
association!

UML
association

Associations, cont

Dependencies on parameter or return type,
weaker dependency (so "weaker" line)

public class A{
 public B doIt(){

...
}

}

A B

AB
public class B{
 public void doIt(A a){

...
}

}

UML
dependency

Reducing Class Dependencies

Have to control associations (attributes)

Ideal we would like the dependencies to
form a tree
● No circular associations

Basic technique: Reduce/remove
associations
● Again: Change attributes to local variables

reduces dependencies and state!

Resolving Mutual Associations

Mutual associations are bad
● Tight coupling
● Domino effects (change one, affect other)
● Classes not understood in separation

Resolve by
● Ignore one Direction
● Lookup one direction
● Use of interfaces (normally between

packages/modules)

Associations: Ignoring one direction*

Do the application need to traverse in both
directions?
public class Order {
 ...
 private Customer customer;
 ...
}

public class Customer {
 ...
 private List<Order> orders;
 ...
}

Do Order need to call methods on Customer? Why?

// Alternative
public class Order {
}

// Alternative, but...
// ...given an order have to
search
// all customers
public class Customer {
 ...
 private List<Order> orders;
 ...
}

Associations: Lookup One Direction*

Lookup Customer given Order (Orders unique)

// Lookup class
public class OrderBook {

Map<Order, Customer> orderCustomer = new HashMap<>();

public Customer getCustomerFor(Order o){
return orderCustomer.get(o);

}

}

public class Customer {
 ...
 private List<Order> orders;
 ...
}

public class Order {
 ...
}

Associations: Use Interfaces

Normally not between classes in same
package

Use between modules, more to come...

A B

<<Interface>>
IA

Resolving Mutual Many to Many*

Mutual dependencies are bad, mutual many
to many worse
● Resolved using "extra" association class

Association
class

Forms of Associations

Confusing ...
● Aggregation, "part of" relationship (hollow diamond)
● Composition, more specific than aggregation (filled

diamond). Objects have same "life cycle"

Class Aggregates

Clusters of associated objects treated as a
unit

Aggregates

Order and Invoice are aggregate
roots

Objects in aggregate accessed
only via root (no direct
association)

Root has global unique identity

Others have identity inside
aggregate only

root root

Establishing Class Dependencies

Many (most?) class dependencies
established during construction of application

Careful construction process will clarify and
reduce dependencies
● Separate construction and use

Using new

If using new all over we have hardwired
dependencies on implementation (can't
change)

// Using new , direct dependency on concrete class
// (implementation). Also: Hard to test
public class A {

B b = new B(); // Fixed can't change (hard to test,
 // can't pass in dependency)

}

Programming to an Interface

A design principle
● To avoid hard coded dependencies on

implementations

"Programming to the interface reduces dependency on
implementation specifics and makes code more
reusable. It gives the programmer the ability to later
change the behavior of the system by simply swapping
the object used with another implementing the same
interface."
Aside: This is impossible if using static classes

Separating Construction from Use

Dependencies passed in via constructor
(best) or method (ok)
● No (few) new in code (Java standard classes ok)
● Preferable pass in interface type

// Passing in dependency in constructor
public class MyClass {

// No new here
private final IMyDependency m;
public MyClass(IMyDependency m){ // Pass in!

this.m = m;
}

}

Centralize Construction Process*

Class dependencies passed in via
constructor, but where does it happen?
● Use (static) factories. Design Pattern: Factory method
// Using a static factory to construct
public class MyFactory{

// Factory method
public static IMyModule getModule(/*possible param*/){

// All new here
IMyInterface i = new MyImplementation();
IMyModule m = new MyModule(i); // Pass in!
return m;

}
}

Aside: Interfaces

Interfaces never have methods for creation or
destruction
● Construction is part of the implementation not the

specification

Law of Demeter

// Hmm, this is bad! Method knows how to navigate
public void createScratchFile(){
String outPutDir = ctxt.getOptions().getScratchDir().
 getAbsolutePath();
... (create file put in outPutDir)
}

// Better? No, explosion of methods...!
String outPutDir = ctxt.
getAbsolutePathOfScratchDirectory();

// Reasonable (supply some data, avoid too big method)
OutputStream out = ctxt.createScratchFileStream
(outPutDir);
// Some other code use stream to write

Law of Demeter, cont

LoD states: Method m of class C should only
call methods of
● C (itself)
● Attribute of C
● Argument of m
● Object created by m

Modules

No generally accepted definition but we say
● Application composed of modules (parts)
● Modules composed of classes , interfaces,

submodules, ...
● Modules in Java created by use of packages
● Module == Subsystem (in this course)

Coupling and Cohesion

Want an application composed of loosely coupled
modules (packages) with high cohesion
(samhörighet)

Print

GUI

Model

ControlUML
dependency

Few and directed
dependencies
between modules
= low coupling

Inside module
stronger
coupling

DC

BA

Circular Module Dependencies

This is bad!

A

C

B

In practise it's one single (large)
module

Kinds of Cohesion

Coincidental cohesion (worst)
● Only relationship between the parts is that they

have been grouped together (utilities)

Functional cohesion (best)
● Parts of a module are grouped because they all

contribute to a single well-defined task of the
module (example: printing)

Kinds of Coupling

Content coupling (pathological)
● One module modifies or relies on the internal

workings of another module
Common coupling (high)
● Two modules share the same global data (a

global variable, global coupling)
Message coupling (lowest)
● Achieved by state decentralization (as in objects)

and component communication with
parameters/return values (or messages)

Resolving Pathological Coupling

Pathological, mutual
dependencies on internal
classes

A

B

Resolved using interface
and removing one
direction

AA

B

<<Interface>>

Interface Segregation Principle*

"No client should be forced to depend on
methods it does not use"// R.C. Martin

If interface too large, split into smaller
● Interfaces can extend!
● Create "role" interfaces

An Interesting Case

"When designing the Collections API Joshua Bloch
decided that instead of having very fine-grained
interfaces to distinguish between different variants of
collections (eg: readable, writable, random-access, etc.)
he'd only have very coarse set of interfaces, primarily
Collection, List, Set and Map, and then document certain
operations as "optional". This was to avoid the
combinatorial explosion that would result from fine-
grained interfaces." //From the Java Collections API
Design FAQ:

http://docs.oracle.com/javase/1.3/docs/guide/collections/designfaq.html#1
http://docs.oracle.com/javase/1.3/docs/guide/collections/designfaq.html#1
http://docs.oracle.com/javase/1.3/docs/guide/collections/designfaq.html#1

Abstraction Levels

"The level of complexity by which a system is viewed. The higher the
level, the less detail. The lower the level, the more detail. The highest
level of abstraction is the single system itself. The next level would be
only a handful of components, and so on, while the lowest level could
be millions of objects." //Free Dictionary

Low(est) level in code often general, possible to
reuse, uses primitive types
Higher levels have application specific knowledge
uses objects
Levels typically drawn bottom (low level) to top (high
level)

Dependency Inversion Principle*

There should be
interfaces
between different
abstraction levels

(used in all lab's)

High level

Middle level,
details isolated

Lowest level, details
isolated

Tools to Inspect Dependencies

Many tools to inspect module dependencies
● STAN, Eclipse plugin
● JDepend
● .. many more

Other Miscellaneous Problems

... on the following slides...

Don't Repeat Yourself (DRY)

"Every piece of knowledge must have a
single, unambiguous, authoritative
representation within a system." //Wikipedia

One possible violation is duplicate code...

Duplicate Code

Duplicate code (literally or logical) means
dependencies
● If modifying must keep in sync

We never ever allow duplicate code
anywhere
● Each fact should be stated in exactly one place (DRY)

Possible use abstract class to eliminate
duplicate code

Abstract Class

"An abstract class is a class that is
incomplete, or to be considered incomplete "

"Normal classes may have abstract methods
(§8.4.3.1, §9.4), that is, methods that are
declared but not yet implemented, only if
they are abstract classes" // JLS 8.1.1.1.

Abstract Method

 A class C has abstract methods if any of the following is
true (JLS 8.1.1.1.):

● C explicitly contains a declaration of an abstract method (§8.4.3). [Using
method modifier abstract, can't have method body]

● Any of C's superclasses has an abstract method and C neither declares
nor inherits a method that implements (§8.4.8.1) it.

● A direct superinterface (§8.1.5) of C declares or inherits a method (which
is therefore necessarily abstract) and C neither declares nor inherits a
method that implements it.

AbstractSomething

Usage Abstract Classes*

Used to eliminate duplicate code and/or
implement default behaviour

<<Interface>>
ISomething

A B

code

code code

<<Interface>>
ISomething

BA

Abstract
class

Very
common in
Java API's

Other Usage Abstract Classes

Impossible to change interface if "published" i.
e. many others use it
Example: Assume all users of our module must use
parameters of type "ISomething" vs. AbstractSomething

// Assume used by very many others
public interface ISomething {

void doIt();
int doOther();
void doYetOther;

}

// Assume used by very many others
public abstract class AbstractSomething {

void doIt();
int doOther();
void doYetOther;
// Next version adds this method
void someNewMethod(){

// Default implementation
}

}

Can't change this will
break clients If using this possible to add methods

with default implementation

Exposing Implementation

Creates a Dependency on Implementation
Details

// A list is used
public List<A> getAllA()

// Possible better, don't know details, just a collection
public Collection<A> getAllA()

The Iterator Design Pattern

Makes it possible to traverse a collection
without knowing the representation

Could be a
● List
● Linked List
● Set
● Tree
● ...

Iterator in Java*

// Interface to traverse some collection
public interface Iterator<E>

public boolean hasNext();
public E next();
public void remove();

// A class capable of returning an iterator
public interface Iterable<T>

public Iterator<T> iterator();

Traversing Collections*

Almost all collection classes implements
Iterable

// If iterable can use the short for-loop
for(A a : o.getCollectionOfAs() { // Prefer!
}
// If removing element must use Iterator explicitly
// (Iterator.remove()), else
// ConcurrentModificationException

● Except Map (which isn't a Collection, doesn't
implement Collection)

Implementing an Iterator*

Created by use of inner classes

Have seen
● Inner class (have reference to enclosing)
● Inner static (nested top level class)

There's also*
● Local inner classes, class defined inside method. Can

use parameters and local variables even after
method has terminated (variables must be final -
declared)

● Anonymous inner classes, as local but anonymous

Implementing an Iterator, cont

Two principally different ways

Fail fast iterator, modification of collection not allowed
during traversal, will throw
ConcurrentModificationException
● Remember size of collection when creates, check size before any

operation

Fails safe iterator, will never throw, creates a copy of
collection, then traverses the copy
● Have to create a copy

More Java Iterators

// ListIterator can move forward and backward
public interface ListIterator<E> extends Iterator<E> {

// All next methods are here and the following...
public boolean hasPrevious();
public E previous();
public void set(E e);

}

Bad Usage of RTTI

// Bad, what if we would like to add another animal
if (animal instanceof Cat) {

 Cat cat = (Cat) animal;

 cat.meow();

} else if (animal instanceof Dog) {

 Dog dog = (Dog) animal;

 dog.woof();

} else if (animal instanceof Hippopotamus) {

 Hippopotamus hippopotamus = (Hippopotamus) animal;

 hippopotamus.roar();

}

// Solution, use polymorphism
animal.say()

This is sometimes called "the
switch statement" smell, if
having this here possible also
will have at other locations, ...

Environment dependencies*

Environment
● Path file separator...

Summary

● Some more principles: Single
responsibility, Dependency inversion
and Law of Demeter

● Minimizing dependencies (associations
classes and between modules and
more)

● Separating construction and usage
● Abstract classes, inner local classes
● Design pattern: Iterator

