
DIT950 Guest Lecture

Shallow introduction to formal 
methods



Education
Until

~18 y.o.

Birth

Bachelor
~3y

PhD
~3,~5y

Master
~2y



Why study?



Why study?

● get jobs
– better paid
– less repetitive
– more free time (…?)

● learn new things
● be more aware
● enjoy my time 



What to study?



What to study?

● Easy stuff
● Hard stuff
● What earns me money
● What I enjoy



Personal growth

If you are happy,

You and others will benefit.

Some see this as the basis of Capitalism

Some saw Capitalism as a consequence of 
the Protestant reform

● Max Weber, “Die protestantische Ethik und 
der Geist des Kapitalismus”

● Carlo M. Cipolla, “Pepper, Wine (and Wool)”



PhD
~3,~5y

Master
~2y

Main Differences 
with 
bachelor and master 
programs:

Independency
Googling for solutions becomes 

harder





Research at CSE

if (a){
  ...
}
else{
  ...
}



Research at Software 
Technology

?
Functional 

Programming
Language

Based 
Security

Formal
Methods



Formal Methods:

Automate 

the process of showing

Correctness of a 
program



Example:
termination as correctness

// Does this terminate?

public void meth(int a){

  while(a<3){

    a++;

  }

}



Example:
type correctness

// What happens here?

int a = “Kalle Anka”;

● Type systems are formal entities 

(= “mathematically defined”)



Logic and mathematics

● Logic = basis of formal methods
● Prevent the ambiguities of natural 

language





Languages

Running
dog

Syntax
Semantics:

Usually 
subjective



How to make semantics 
objective

● Invent a terminology 
– (e.g. Medical science, engineering)

● Use mathematics and logic

Either way: refer to basic concepts 
that we can assume everyone 
understands in the same way



Use of mathematics to describe 
syntax and semantics

of a language

Usually means: computers can process it



Formal Methods theoretical 
tools

● Formal logics:
– Propositional
– N-th order
– Temporal

● Formal languages



Propositional logic

● Formalizes events/facts:



First (N-th) order logic

● Formalizes 
– events+objects 
– their properties
– The relations among objects
– First order logic contains Propositional 

logic



FOL
● Red(ferrari)           Expensive(ferrari)

Red(bugatti)          Expensive(bugatti)

Red(lamborghini)   Expensive(lamborghini)
● Constants: bugatti, ferrari, lamborghini
● Predicates: Red, Expensive

● In FOL: 3 constants+2 predicates
● In PL : 3*2 symbols: must express everything as a fact

– e.g. “ferrari is red”, “lamborghini is expensive”
● If a porsche is added, in PL need to define 2 more symbols



FOL vs PL

● FOL allows to express properties of 
items in sets

In a compact way, without having to 
know the items in advance



More on this:

● DAT060, Logic in Computer Science



Formal Methods tools

● Theorem proving
● Static analysis
● Model checking
● Specification Languages



Theorem Prover

● Theorem: 

logical formula that is always true (valid).
– And there exist a proof of such validity.

e.g. Sum of triangle's angles is 180°
● A theorem prover can prove a logical 

formula (semi) automatically.



Static analysis

● Algorithms that can extract properties of 
a program without running it.

● e.g. “No null-pointer exception is 
thrown”

● Formal syntax and formal semantics is 
needed



Typical use

static analysis algorithm 

transforms a 

program+desired property 

into a logical formula

then input to theorem prover to see if 
it holds.



Model Checking

● Software described by
– Sequence of machine states

● To prove some properties
– Not all states are needed

● “Abstract away” the states
– Ockham's razor



Automatic door

!open

open

open

sensor_read

!sensor_read

sensor_lock

sensor_read

In each state the door is 
either 

open
or not open (!open)



Automatic door

!open

open

open

sensor_read

!sensor_read

sensor_lock

sensor_read

 ■ open (always open)

 ◆ open (eventually open)

 ◆■ open (eventually open)

Using temporal logic
one can ask 
questions 
about runs of the system 



Formal Specification language

● Another computer language
● for telling what a program should do

– Not for “computing things”
● Efficiency should not be important
● Correctness becomes dependent 

from/defined by such specification



Correct
Program

Programmer's
Intention



Correct
Program

Formal
Methods

tools
Formal Specification

Correctness
Of

tools

Programmer's
Intention
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