


Often the only>

feasible option

<

Required for
software
Testing certification

Cannot show correctness.

Cheap




What is a test?

+ It is like an experiment:

- Initial state
- Test logic
- Expected state vs. real state

W ’ %




How good are my test cases?

+ If they find bugs they are good for sure
+ Otherwise:

- Need to find a measure of the likelihood of finding
bugs
- E.g. “All statement are exercised at least once”
* Statement coverage

- E.g. "All branches are exercised both when their
guard is true and when it is false”

* Branch coverage






FPhile

Formal
specification

.

JML

Java Modelling Language




Static Analysis
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Real-Time Java Virtual Machines
that implement the
Real-Time Java Specification
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Real-Time Java Virtual Machines
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Floating point nhumbers

Approximation of reals
in scientific notation

e
m X [3
mantissa (decimal)

(integers)







Number of bits

Width

Precision



Real-time Java Specifications
for High Coverage Test
Generation

Wolfgang Ahrendt Wojciech MostowskKi pﬁaagharnieelllei

In: Proceedings of the 10th International
Workshop on Java Technologies for Real-Time
and Embedded Systems,

JTRES 2012

ACM 2012



-, Contributions

CHARTER

Formalisation of Real-Time
Specification for Java (RTSJ)

A test-case generator (KeYTestGen)
using formal specification and source
code

Test industrial code
using KeYTestGen and formal
specification




KeYTestGen %

Symbolic Constraint Test code
Execution solving generation

\

Runnable
Test

Java+Specification Suite



Symbolic execution e

+ Execution of a program with symbolic
values

+ all executions (runs) can be expressed



Symbolic execution e

+ It is similar to developing an algebraic
expression with literals

- a*(b+c) -



Symbolic execution e

+ It is similar to developing an algebraic
expression with literals

- a*(b+c) »a*b + a*c



Symbolic execution e

« It is similar to developing an algebraic
expression with literals

- ax(b+c) »a*b + a*c

+ One can substitute a,b,c with any value
(e.g. in integers)

- The result will still be correct



Sets of constraints

Describing paths
inside the code

Symbolic Constraint Test code
Execution solving generation
*

— x 3 —

*

\

Runnable
Test

Java+Specification Suite



KeYTestGen %

+ Based on KeY, a theorem prover for
dynamic logic (DL)

- A DL formula is built from
specification+code

Path
. J d




/%@ Pre-condition

requires t > 0;
ensures x+ty > t ==> \result == t;
ensures x+y <= t ==> \result == x+y;

*
e/ Post-condition

public int saturation(int x, int y, int

X = X+ty;
if(x > t){return t;}
else {return x;}



requires t > 0;

X = Xty;
if(x > t){return t;}

else {return x;}




X = Xty;
if(x > t){return t;}
else {return x;}




X = xty;
if(x > t){return t;}
else {return x;}

if(x > t){return t;}
else {return x;}




X = xty;
if(x > t){return t;}
else {return x;}

if(x > t){return t;}
else {return x;}

if(x+y > t){return t;}
else {return x+vy;}




if(x+ty > t){return t;}
else {return x+y;}




if(x+ty > t){return t;}

else {return x+y;}

return t; return x+y;




Sets of constraints e R a——

Test inputs

Describing paths
inside the code

Symbolic Constraint Test code
Execution solving generation
*

— ) —

*

B

\

Runnable
Test

Java+Specification

Suite



Sets of constraints e R a——

Test inputs

Describing paths
inside the code

Constraint
solving

Symbolic
Execution

Test code
generation

Runnable
Test

Postcondition:

Java+Specification

Suite

decides test pass/fail



Runnable

Postcondition: Test

Suite

Java+Specification
decides test pass/fail

=> \result == t;
=> \result == x+y;

ensures x+y > t
ensures xX+y <= t



Specification matters %
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Specification matters %

FAN



Specification matters %
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Specification matters
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Syrmbolic
Execution
of method/( )
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Specification matters

_ _ Library
method () Invocation Method
I libmethod()

invocation

Syrmbolic
Execution
of method/( )
(s (I O (I (@O (I



Specification matters

_ _ Library
method () Invocation Method
I libmethod()

invocation

Syrmbolic ?
Execution -
of method/( )

Is (b I O ™ (U»



Specification in Theorem Proving based
test case generation

public void underTest(){

otherMethod();




Specification in Theorem Proving based
test case generation

otherMethod () ;

X = xX+ty;
if(x > t){return t;}
else {return x;}



Specification in Theorem Proving based
test case generation /




Formalization
Of
RTSJ




Modularity and decoupling:
Do not refer to implementation
details (specification-only fields)

Formalization
Of
RTSJ




Modularity and decoupling:
Do not refer to implementation
details (specification-only fields)

Formalization
Of
RTS]



Modularity and decoupling:
Do not refer to implementation
details (specification-only fields)

~70 classes Formalization
~800 methods Of
~4000 lines of JML specification RTSJ



Evaluation:
Testing Lightgun driver

+ A small application ~ 700 loc

- Driver for a CRT-compatible lightgun
- Realtime: syncing with the screen refresh

+ Coverage: MC/DC




Evaluation:

Verifying correctness of RTSJ 5
code with KeY

o

F S %
5

Oy

+ CDx Real-Time Java Benchmark
+ A collision detector for aerial traffic
* Proofs can be hard

- Some automatic
— Others require user input



Evaluation:
Testing of API
implementation

+ JamaicaVM implementation

+ Tested against our specification

+ Our method found a problem
automatically




Time In RTSJ

* Clock.:

- Entity that measures time. The default one
is called Real-time clock.

+ AbsoluteTime:

- Elapsed time of a specific Clock



A

absolute() method .
iIN AbsoluteTime class E"

+ public AbsoluteTime absolute(Clock clock)

- Return a copy of this modified if necessary to
have the specified clock association.

- A new object is allocated for the result. [...]

- The clock association of the result is with the
clock passed as a parameter.

- If clock is null the association is made with the
real-time clock.



absolute() method E’.r

AbsoluteTime
.absolute( ‘ )



absolute () method

AbsoluteTime

AbsoluteTime



absolute() method

/*@
ensures clock != null ==>
\result.getClock() == clock;
ensures clock == null ==>
\result.getClock() ==
Clock.getRealtimeClock();
* /

public AbsoluteTime absolute(Clock clock);



The inconsistency

+ KeYTestGen showed (automatically) that:

+ If a clock is passed as argument, the
reference to it is not set
/*@

ensures clock !'= null ==>

\result.getClock() == clock;

ensures clock == null ==>
\result.getClock() ==
Clock.getRealtimeClock();

*/
public AbsoluteTime absolute(Clock clock);



absolute () method

AbsoluteTime

AbsoluteTime




The inconsistency

+ If a clock is passed as argument, the
reference to it is not set

* This was intentional
* There is no way to add a clock in RTSJ



Challenges and
related work

+ Better handling of quantifiers

- Christoph Gladisch.
“Test Data Generation for Programs with Quantified
First-Order Logic Specifications”

+ Concrete instantiation of reference type

- Specification & solutions to constraints tells just
what the result is, but not how to build it

+ Other Java+JML approaches:

- JMLUNItNG

* Test the constructor, and then cache the created objects
for future tests



Verifying (in-)stability In
floating-point programs
by
Increasing precision
using SMT solving

Gabriele Wolfgang
Faganelli Ahrendt

To appear in: 15th International Symposium on
Symbolic and Numeric Algorithms for Scientific
Computing,

SYNASC 2013
IEEE Computer Society, 2013



Instability: running program P
using different precisions...

Output space

Gives results suspiciously = P ..

far from each other Phifioat
Input space
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Idea:
Find witnesses of instability for
P

such that it does not require
user numerical expertise to do
it
(no proofs)






+Is there any input value v
for P and P

lofloat hifloat

such that the
relative error
between them is
bigger than a
certain specified
value?

—P

lofloat
]
Phiﬂoat




Given program P, ... and the
. . )
admissible error K8

1) Compare I:)Ioﬂoat Wlth I:)hiﬂoat
2) Find a witness of instability



Given program P, ..+ @and the
. - e
admissible error KN

1) Compare I:)Ioﬂoat Wlth IDhiﬂoat
2) Find a witness of instability



Given program P, ... and the
. - e
admissible error “op

1) Compare Pynoar WIth Pyigear
2) Find a witness of instability

Implemented with the

Prototypical language
FPhile



Given program P, ... and the
= = Q
admissible error o

1) Compare I:)Ioﬂoat Wlth I:)hifloat
2) Find a witness of instability



Given program P, ... and the
= = G
admissible error oy

1) Compare I:)Ioﬂoat Wlth I:)hiﬂoat
2) Find a witness of instability

Implemented with

Program syntactical

transformation
and

weakest precondition



Given program P, ... and the
= = Q
admissible error oy

1) COmpare I:)Ioﬂoat Wlth IDhiﬂoat
2) Find a witness of instability



Given program P, ... and the
admissible error

1) Compare I:)Ioﬂoat Wlth IDhiﬂoat
2) Find a witness of instability

Implemented with

Satisfiability Modulo
Theory (SMT) Solver



Floating-Point While

Java-like IEEE support

Two floating-point types:
lofloat and hifloat



FPhile: types

* The lofloat and hifloat types
are “"abstract”:

« User-defined precision(in bits)
*Exponent
*Mantissa



FPhile annotation statements

assume (bool b)

assert (bool b)



Precision comparing predicate

stable( e @ r)

* Meaning:

- At the point of the program where this
predicate occurs

-the evaluation of e, differs relatively
from €pifioae DY @t MOSt rifioa

Specify the admissible error



Given program P, ... and the
= = G
admissible error oy

1) Compare I:)Ioﬂoat Wlth I:)hiﬂoat
2) Find a witness of instability

Implemented with

Program syntactical

transformation
and

weakest precondition



lofloat £f,qg;
g = 100.0;
assume stable(f@0.0)
if(£>0.0)¢{
£ = £+(g*f);

}
assert stable(f@2-24)



lofloidofloat f,qg;

g = lhifloat hf, hg;

assumg = 100.0;
if(f>hg = 100.0;
f =—assume abs

if (£>0.0)¢

(hf — £f) / hf ) <= 0.0

) f = £f+(g*f);

asseri

}
if(hf>0.0){

hf = hf+(hg*hf);

}

assert abs|(

(hf — £) / hf ) <= 2-2

.0)

—24)


mailto:f@2-24

lofloat f£,gq; Compare Plofloat Wlth Phi
hifloat hf,hg;

g = 100.0; Act 1
hg = 100.0;
assume abs( (hf — f) / hf ) <= 0.0
if(£>0.0)¢{

£ = £+(g*f);

}
if(hf>0.0){

hf = hf+(hg*hf);

}
assert abs( (hf — f) / hf ) <= 2-24


mailto:f@2-24

Weakest precondition of
program P

* First-order logic formula

+ It encodes the least constraining
input that

- satisfies P's assertions

Compare P .. With P,
Act 2



Given program P, ... and the
admissible error

1) Compare I:)Ioﬂoat Wlth IDhiﬂoat
2) Find a witness of instability

Implemented with

Satisfiability Modulo
Theory (SMT) Solver



Satisfiability Modulo Theory

solvers
SMT solver
First Order
Formula Booleans,
reals,
. integer
Integer, floats,

floats) S




Find a witness of instability

+ Instability witness found by

- Finding satisfiable assignment of the
negated weakest precondition

+ Withess:

- The input that makes P fail to satisfy its
assertions.



Implementation details

+ Microsoft Z3 supports floating-point
arithmetic

+ Weakest precondition to SMT input
translates directly

- No axiomatization of a IEEE floating-point
unit in e.qg. reals



Performance

+ We compared this approach with random
testing

+ Stability between 32 and 64 bits IEEE
computations

+ Machine was a normal desktop (specs on
paper)



Heron's triangle area formula

« This formula is numerically bad

+ Instability (bound = 2-22) is found earlier
by testing:
- Testing:
104 tests, 3000 failures, 1.6 minutes
- Fphile:

 Counterexample in 2.68 minutes



Heron's formula, improved

* This is a rearrangement suggested by
W.Kahan

+ Numerically better, but unstable (bound
— 2-22)
- Testing:
107 tests, no failure, 27 hours
- Fphile:

 Counterexample in 6.5 minutes



*

Parameters affecting
performance in Z3
Precision(s) used

Operations. Most expensive are:

*** RoundTolntegral

** Square root

** Multiplication/division

* Addition/subtraction
Number of variables

Nature of formula

- unsatisfiable, “hardly” satisfiable...



Conclusion

+ An automated analysis to detect
instability.

« The withesses can be used for further
analysis.

« It is inspired by W.Kahan's manuscrig
on floating-point debuggers




Conclusion — SMT solving

- We found some bugs in Z3
- promptly fixed by the Z3ers

+ About the SMT floating-point theory:

- Among its first applications
* to our knowledge
- We contribued with some refinements

 Subnormality predicate, casting, literal
representation
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CHARTER

f_{ Critical and High Assurance Requirements Transformed through Engineering Rigour

http://charterproject.ning.com/



Real-Time Java Specifications for High Coverage Test
Generation

Symbolic execution

‘}(KeYTestGen Constraint solving

Code generation

Code generation from specification

/Formal Dual usage of specification
— Specification Replacement of missing/unknown code

Feasibility of the approach

Verification: collision
detector

@Evaluation

Test case generation:
JamaicaVM, Ligthgun Driver




Verifying (in-)stability in floating-point programs by
increasing precision using SMT solving

2

Instability

*

Specification

2

Program duplication

*

Weakest precondition

2

SMT solving and floating-point

2

Performances

WwWwwW.Cse.Chalmers.ses gabpagsdevel A fphiles



2

*

*

*

Links

CDx benchmark

- http://sss.cs.purdue.edu/projects/cdx/
KeY

- http://www.key-project.org
KeYTestGen eclipse update site

- http://www.cse.chalmers.se/~gabpag
JMLUNItNG

- http://formalmethods.insttech.washington.edu/software/jmlunit
ng/
JML formalized RTSJ API

- http://wwwhome.ewi.utwente.nl/~mostowskiwi/


http://sss.cs.purdue.edu/projects/cdx/
http://www.key-project.org/
http://www.cse.chalmers.se/~gabpag
http://formalmethods.insttech.washington.edu/software/jmlunitng/
http://formalmethods.insttech.washington.edu/software/jmlunitng/
http://wwwhome.ewi.utwente.nl/~mostowskiwi/

i |

20 2=2! 4=22 8=23






i |

20 2=2! 4=22 8=23






MC/DC

Modified Condition/Decision Criterion

For all boolean expressions d in program
under test:

- A swap in the value of boolean literal cin d
- Swaps the value of d
- Maintaining fixed other conditions c'in d

Shown with a pair of tests for each ¢

Enables safety-critical software
certifications (DO178C)
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