

Often the only>

feasible option

<

Required for
software
Testing certification

Cannot show correctness.

Cheap

What is a test?

+ It is like an experiment:

- Initial state
- Test logic
- Expected state vs. real state

W ’ %

How good are my test cases?

+ If they find bugs they are good for sure
+ Otherwise:

- Need to find a measure of the likelihood of finding
bugs
- E.g. “All statement are exercised at least once”
* Statement coverage

- E.g. "All branches are exercised both when their
guard is true and when it is false”

* Branch coverage

FPhile

Formal
specification

.

JML

Java Modelling Language

Static Analysis

IEEE
Floating-point
Computations

Real-Time
Java

Real-Time Java Virtual Machines
that implement the
Real-Time Java Specification

A pﬁ'gee:JREs for Advanced Devices

- e
%ammcav

Real-Time Java Virtual Machines

LUND UNIVERSITY

LJRT

Floating point nhumbers

Approximation of reals
in scientific notation

e
m X [3
mantissa (decimal)

(integers)

Number of bits

Width

Precision

Real-time Java Specifications
for High Coverage Test
Generation

Wolfgang Ahrendt Wojciech MostowskKi pﬁaagharnieelllei

In: Proceedings of the 10th International
Workshop on Java Technologies for Real-Time
and Embedded Systems,

JTRES 2012

ACM 2012

-, Contributions

CHARTER

Formalisation of Real-Time
Specification for Java (RTSJ)

A test-case generator (KeYTestGen)
using formal specification and source
code

Test industrial code
using KeYTestGen and formal
specification

KeYTestGen %

Symbolic Constraint Test code
Execution solving generation

\

Runnable
Test

Java+Specification Suite

Symbolic execution e

+ Execution of a program with symbolic
values

+ all executions (runs) can be expressed

Symbolic execution e

+ It is similar to developing an algebraic
expression with literals

- a*(b+c) -

Symbolic execution e

+ It is similar to developing an algebraic
expression with literals

- a*(b+c) »a*b + a*c

Symbolic execution e

« It is similar to developing an algebraic
expression with literals

- ax(b+c) »a*b + a*c

+ One can substitute a,b,c with any value
(e.g. in integers)

- The result will still be correct

Sets of constraints

Describing paths
inside the code

Symbolic Constraint Test code
Execution solving generation
*

— x 3 —

*

\

Runnable
Test

Java+Specification Suite

KeYTestGen %

+ Based on KeY, a theorem prover for
dynamic logic (DL)

- A DL formula is built from
specification+code

Path
. J d

/%@ Pre-condition

requires t > 0;
ensures x+ty > t ==> \result == t;
ensures x+y <= t ==> \result == x+y;

*
e/ Post-condition

public int saturation(int x, int y, int

X = X+ty;
if(x > t){return t;}
else {return x;}

requires t > 0;

X = Xty;
if(x > t){return t;}

else {return x;}

X = Xty;
if(x > t){return t;}
else {return x;}

X = xty;
if(x > t){return t;}
else {return x;}

if(x > t){return t;}
else {return x;}

X = xty;
if(x > t){return t;}
else {return x;}

if(x > t){return t;}
else {return x;}

if(x+y > t){return t;}
else {return x+vy;}

if(x+ty > t){return t;}
else {return x+y;}

if(x+ty > t){return t;}

else {return x+y;}

return t; return x+y;

Sets of constraints e R a——

Test inputs

Describing paths
inside the code

Symbolic Constraint Test code
Execution solving generation
*

—) —

*

B

\

Runnable
Test

Java+Specification

Suite

Sets of constraints e R a——

Test inputs

Describing paths
inside the code

Constraint
solving

Symbolic
Execution

Test code
generation

Runnable
Test

Postcondition:

Java+Specification

Suite

decides test pass/fail

Runnable

Postcondition: Test

Suite

Java+Specification
decides test pass/fail

=> \result == t;
=> \result == x+y;

ensures x+y > t
ensures xX+y <= t

Specification matters %

(I

Specification matters %

FAN

Specification matters %

o S
(I

Specification matters

o S
(I

Syrmbolic
Execution
of method/()

s (I O (I (™ O

'

Specification matters

_ _ Library
method () Invocation Method
I libmethod()

invocation

Syrmbolic
Execution
of method/()
(s (I O (I (@O (I

Specification matters

_ _ Library
method () Invocation Method
I libmethod()

invocation

Syrmbolic ?
Execution -
of method/()

Is (b I O ™ (U»

Specification in Theorem Proving based
test case generation

public void underTest(){

otherMethod();

Specification in Theorem Proving based
test case generation

otherMethod () ;

X = xX+ty;
if(x > t){return t;}
else {return x;}

Specification in Theorem Proving based
test case generation /

Formalization
Of
RTSJ

Modularity and decoupling:
Do not refer to implementation
details (specification-only fields)

Formalization
Of
RTSJ

Modularity and decoupling:
Do not refer to implementation
details (specification-only fields)

Formalization
Of
RTS]

Modularity and decoupling:
Do not refer to implementation
details (specification-only fields)

~70 classes Formalization
~800 methods Of
~4000 lines of JML specification RTSJ

Evaluation:
Testing Lightgun driver

+ A small application ~ 700 loc

- Driver for a CRT-compatible lightgun
- Realtime: syncing with the screen refresh

+ Coverage: MC/DC

Evaluation:

Verifying correctness of RTSJ 5
code with KeY

o

F S %
5

Oy

+ CDx Real-Time Java Benchmark
+ A collision detector for aerial traffic
* Proofs can be hard

- Some automatic
— Others require user input

Evaluation:
Testing of API
implementation

+ JamaicaVM implementation

+ Tested against our specification

+ Our method found a problem
automatically

Time In RTSJ

* Clock.:

- Entity that measures time. The default one
is called Real-time clock.

+ AbsoluteTime:

- Elapsed time of a specific Clock

A

absolute() method .
iIN AbsoluteTime class E"

+ public AbsoluteTime absolute(Clock clock)

- Return a copy of this modified if necessary to
have the specified clock association.

- A new object is allocated for the result. [...]

- The clock association of the result is with the
clock passed as a parameter.

- If clock is null the association is made with the
real-time clock.

absolute() method E’.r

AbsoluteTime
.absolute(‘)

absolute () method

AbsoluteTime

AbsoluteTime

absolute() method

/*@
ensures clock != null ==>
\result.getClock() == clock;
ensures clock == null ==>
\result.getClock() ==
Clock.getRealtimeClock();
* /

public AbsoluteTime absolute(Clock clock);

The inconsistency

+ KeYTestGen showed (automatically) that:

+ If a clock is passed as argument, the
reference to it is not set
/*@

ensures clock !'= null ==>

\result.getClock() == clock;

ensures clock == null ==>
\result.getClock() ==
Clock.getRealtimeClock();

*/
public AbsoluteTime absolute(Clock clock);

absolute () method

AbsoluteTime

AbsoluteTime

The inconsistency

+ If a clock is passed as argument, the
reference to it is not set

* This was intentional
* There is no way to add a clock in RTSJ

Challenges and
related work

+ Better handling of quantifiers

- Christoph Gladisch.
“Test Data Generation for Programs with Quantified
First-Order Logic Specifications”

+ Concrete instantiation of reference type

- Specification & solutions to constraints tells just
what the result is, but not how to build it

+ Other Java+JML approaches:

- JMLUNItNG

* Test the constructor, and then cache the created objects
for future tests

Verifying (in-)stability In
floating-point programs
by
Increasing precision
using SMT solving

Gabriele Wolfgang
Faganelli Ahrendt

To appear in: 15th International Symposium on
Symbolic and Numeric Algorithms for Scientific
Computing,

SYNASC 2013
IEEE Computer Society, 2013

Instability: running program P
using different precisions...

Output space

Gives results suspiciously = P ..

far from each other Phifioat
Input space

17.6
16
14.4
12.8
11.2,
9.6

6.4
4.8
3.2
1.6

04|
02
60
D8]
D0
04|
D2
00
48
46

44

31.5

33.6

35.7

37.8

39.9

Idea:
Find witnesses of instability for
P

such that it does not require
user numerical expertise to do
it
(no proofs)

+Is there any input value v
for P and P

lofloat hifloat

such that the
relative error
between them is
bigger than a
certain specified
value?

—P

lofloat
]
Phiﬂoat

Given program P, ... and the
. .)
admissible error K8

1) Compare I:)Ioﬂoat Wlth I:)hiﬂoat
2) Find a witness of instability

Given program P, ..+ @and the
. - e
admissible error KN

1) Compare I:)Ioﬂoat Wlth IDhiﬂoat
2) Find a witness of instability

Given program P, ... and the
. - e
admissible error “op

1) Compare Pynoar WIth Pyigear
2) Find a witness of instability

Implemented with the

Prototypical language
FPhile

Given program P, ... and the
= = Q
admissible error o

1) Compare I:)Ioﬂoat Wlth I:)hifloat
2) Find a witness of instability

Given program P, ... and the
= = G
admissible error oy

1) Compare I:)Ioﬂoat Wlth I:)hiﬂoat
2) Find a witness of instability

Implemented with

Program syntactical

transformation
and

weakest precondition

Given program P, ... and the
= = Q
admissible error oy

1) COmpare I:)Ioﬂoat Wlth IDhiﬂoat
2) Find a witness of instability

Given program P, ... and the
admissible error

1) Compare I:)Ioﬂoat Wlth IDhiﬂoat
2) Find a witness of instability

Implemented with

Satisfiability Modulo
Theory (SMT) Solver

Floating-Point While

Java-like IEEE support

Two floating-point types:
lofloat and hifloat

FPhile: types

* The lofloat and hifloat types
are “"abstract”:

« User-defined precision(in bits)
*Exponent
*Mantissa

FPhile annotation statements

assume (bool b)

assert (bool b)

Precision comparing predicate

stable(e @ r)

* Meaning:

- At the point of the program where this
predicate occurs

-the evaluation of e, differs relatively
from €pifioae DY @t MOSt rifioa

Specify the admissible error

Given program P, ... and the
= = G
admissible error oy

1) Compare I:)Ioﬂoat Wlth I:)hiﬂoat
2) Find a witness of instability

Implemented with

Program syntactical

transformation
and

weakest precondition

lofloat £f,qg;
g = 100.0;
assume stable(f@0.0)
if(£>0.0)¢{
£ = £+(g*f);

}
assert stable(f@2-24)

lofloidofloat f,qg;

g = lhifloat hf, hg;

assumg = 100.0;
if(f>hg = 100.0;
f =—assume abs

if (£>0.0)¢

(hf — £f) / hf) <= 0.0

) f = £f+(g*f);

asseri

}
if(hf>0.0){

hf = hf+(hg*hf);

}

assert abs|(

(hf — £) / hf) <= 2-2

.0)

—24)

mailto:f@2-24

lofloat f£,gq; Compare Plofloat Wlth Phi
hifloat hf,hg;

g = 100.0; Act 1
hg = 100.0;
assume abs((hf — f) / hf) <= 0.0
if(£>0.0)¢{

£ = £+(g*f);

}
if(hf>0.0){

hf = hf+(hg*hf);

}
assert abs((hf — f) / hf) <= 2-24

mailto:f@2-24

Weakest precondition of
program P

* First-order logic formula

+ It encodes the least constraining
input that

- satisfies P's assertions

Compare P .. With P,
Act 2

Given program P, ... and the
admissible error

1) Compare I:)Ioﬂoat Wlth IDhiﬂoat
2) Find a witness of instability

Implemented with

Satisfiability Modulo
Theory (SMT) Solver

Satisfiability Modulo Theory

solvers
SMT solver
First Order
Formula Booleans,
reals,
. integer
Integer, floats,

floats) S

Find a witness of instability

+ Instability witness found by

- Finding satisfiable assignment of the
negated weakest precondition

+ Withess:

- The input that makes P fail to satisfy its
assertions.

Implementation details

+ Microsoft Z3 supports floating-point
arithmetic

+ Weakest precondition to SMT input
translates directly

- No axiomatization of a IEEE floating-point
unit in e.qg. reals

Performance

+ We compared this approach with random
testing

+ Stability between 32 and 64 bits IEEE
computations

+ Machine was a normal desktop (specs on
paper)

Heron's triangle area formula

« This formula is numerically bad

+ Instability (bound = 2-22) is found earlier
by testing:
- Testing:
104 tests, 3000 failures, 1.6 minutes
- Fphile:

 Counterexample in 2.68 minutes

Heron's formula, improved

* This is a rearrangement suggested by
W.Kahan

+ Numerically better, but unstable (bound
— 2-22)
- Testing:
107 tests, no failure, 27 hours
- Fphile:

 Counterexample in 6.5 minutes

*

Parameters affecting
performance in Z3
Precision(s) used

Operations. Most expensive are:

*** RoundTolntegral

** Square root

** Multiplication/division

* Addition/subtraction
Number of variables

Nature of formula

- unsatisfiable, “hardly” satisfiable...

Conclusion

+ An automated analysis to detect
instability.

« The withesses can be used for further
analysis.

« It is inspired by W.Kahan's manuscrig
on floating-point debuggers

Conclusion — SMT solving

- We found some bugs in Z3
- promptly fixed by the Z3ers

+ About the SMT floating-point theory:

- Among its first applications
* to our knowledge
- We contribued with some refinements

 Subnormality predicate, casting, literal
representation

IEEE
Floating-point
Computations

Real-Time
Java

CHARTER

f_{ Critical and High Assurance Requirements Transformed through Engineering Rigour

http://charterproject.ning.com/

Real-Time Java Specifications for High Coverage Test
Generation

Symbolic execution

‘}(KeYTestGen Constraint solving

Code generation

Code generation from specification

/Formal Dual usage of specification
— Specification Replacement of missing/unknown code

Feasibility of the approach

Verification: collision
detector

@Evaluation

Test case generation:
JamaicaVM, Ligthgun Driver

Verifying (in-)stability in floating-point programs by
increasing precision using SMT solving

2

Instability

*

Specification

2

Program duplication

*

Weakest precondition

2

SMT solving and floating-point

2

Performances

WwWwwW.Cse.Chalmers.ses gabpagsdevel A fphiles

2

*

*

*

Links

CDx benchmark

- http://sss.cs.purdue.edu/projects/cdx/
KeY

- http://www.key-project.org
KeYTestGen eclipse update site

- http://www.cse.chalmers.se/~gabpag
JMLUNItNG

- http://formalmethods.insttech.washington.edu/software/jmlunit
ng/
JML formalized RTSJ API

- http://wwwhome.ewi.utwente.nl/~mostowskiwi/

http://sss.cs.purdue.edu/projects/cdx/
http://www.key-project.org/
http://www.cse.chalmers.se/~gabpag
http://formalmethods.insttech.washington.edu/software/jmlunitng/
http://formalmethods.insttech.washington.edu/software/jmlunitng/
http://wwwhome.ewi.utwente.nl/~mostowskiwi/

i |

20 2=2! 4=22 8=23

i |

20 2=2! 4=22 8=23

MC/DC

Modified Condition/Decision Criterion

For all boolean expressions d in program
under test:

- A swap in the value of boolean literal cin d
- Swaps the value of d
- Maintaining fixed other conditions c'in d

Shown with a pair of tests for each ¢

Enables safety-critical software
certifications (DO178C)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103

