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Overview

* Papers
— Barker et al (2012), SmartCap: Flattening peak electricity demand in smart

homes
— Georgiadis, Papatriantafilou (2014), Dealing with storage without forecasts in
Smart Grids: problem transformation and online scheduling algorithm

* Focus
— Online/offline approach
— Modeling
— Applicability
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Overview (2)

e Barker et al (2012)

— Premise: home, background loads, slack
— Problem and algorithm

* Georgiadis, Papatriantafilou (2014)
— Premise: online, renewables, storage
— Modeling
— Greedy algorithm
— Experiments
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Scheduling invisible house loads

Premise

 Load management scheme for flattening household electricity

usage or demand
* Modifying background electrical

loads that are completely

transparent to home occupants and have no impact on their

perceived comfort.

— l.e. air conditioners (A/Cs), refrigerators, freezers, dehumidifiers,

heaters
| Load | Peak | Average | Quaniity ||
o Onllne Refrigerator 456W 74W |
Freezer 437TW 82W
* Least Slack First (LSF) policy HRV. L129W [ 24W
Dehumidifier 505W 371W
Main A/C 1046W 305W

(inspired by the Earliest

Bedroom A/C 1 57T1W 280W

Bedroom A/C 2 571W 141W

Deadline First algorithm)

Background 4715W | 1277TW
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Interactive 9963W 887W
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Scheduling invisible house loads

Definitions

* Slack: the remaining length of time the load can be off, i.e.,
disconnected from power, without assuring that it will violate
its objective.

* May change over time (online problem)
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Scheduling invisible house loads

Definitions

(a) no scheduling (b) with scheduling

peak = 3000W

power
power

peak = 1000W

— — —
one hour period one hour period
(c) offline scheduling (d) online scheduling

interactive loads

interactive loads

/ \l/ \4 peak = 1000W

power
power

— —
one hour period one hour period
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Scheduling invisible house loads
Algorithm

e Least Slack First (LSF)

— supplies power to loads in ascending order of their current slack value.

* ++target capacity threshold

— Once the sum of the background loads’ power usage reaches the
capacity threshold, the scheduler stops powering additional
background loads.

* Concerns

— Threshold too low: defers too many loads, resulting in their slack
values approaching zero together...

— Threshold too high: power too many background loads at a time.
Spikes...
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Scheduling invisible house loads

Some results
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Overview

e Barker et al (2012)

— Premise: home, background loads, slack
— Problem and algorithm

* Georgiadis, Papatriantafilou (2014)
— Premise: online, renewables, storage
— Modeling
— Greedy algorithm
— Experiments
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Online load balancing with storage
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Definitions

Definition 1 (Unforecasted energy dispatch problem with storage).
Given a distribution system subgrid, we call unforecasted energy dispatch prob-
lem with storage the problem of dispatching generated electrical and thermal
energy to end consumers without using forecasts and (ytakiRgRtONGCCOURN Gy
(Storagecapabilities prescent, (while trying to minimizé peak eéneérgy consumption
within a given time interval.

Definition 2 (Online load demand balancing problem with storage)
Let M;,i = 0...n — 1 be a set of machines where variable load credit (i.e. storage) can

Problem accumulate and to, ..., t;.... be an input task sequence of o task types, Simple and storage.
with the following properties: each task t; of both types has load w; and restrictions on the
allowable machines it can run on, @hile'Storage tasks additionally create on all machines load

Pr- @ @@ifhcqual or less to their load (with the possibility of 0 on some but not all machines®). We

define the online load demand balancing problem with storage as the problem of assigning
Goal the tasks to the machines while minimizing the mazximum load on the machines,

* Types of tasks

* Elastic/inelastic, electrical/thermal, storage/simple

* Simplifications and assumptions
* No distinction of local/global storage
* Diurnal pattern, hourly slots
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Modeling energy dispatch

ldentifying task types Incoming tasks
Gia tj.,
tisy
. * 9 & @
Scheduling tasks to (M, Mg} (MM, ... Mg} (M} {McM,} s b
to one of its
machines Machines i
v 2]
[E]
El|m|nofe fime parameter & |&i| A T || _____ load
(for flexible TQSkS) il i_ ! storage
M, M, M, M, M,
Legend
|ncorpor01_e STOI’CIge i Electric fixed load task g' Load
Thermal fixed load task L_} Storage
_ug';r Electric shif-'table load task My, M, Electric machines
g Zlhernilal shiftable l:ad task M,,,..,M, Thermal machines
ectric storage tas _
E Thermal storage task i) rAﬂl}z;:ﬂfgr;a;ﬁnes
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Demand assignment algorithm

Simple: Assign incoming task to machine with min load-storage
difference
Efficient: Within [logn|+1 of the OPT

Incoming tasks Machines
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Algorithm proof (core idea)

Theorem 1 Algorithm STORAGEGREEDY achieves a competitive ratio of [logn]+1 for the
online load demand balancing problem with storage, where n is the number of machines.

o ] layer i+1
1 & ;|- layer i
& AU
[ ] task k E
i o] | R
%7 % % / layer 2
_‘,ﬂ; el _
&S / layer 1
gé .8 .. 8i~
1o
M, M, M; M,, Riiogn] < % = % < OPT (o)
* By definition: W, = R,_; — R; ,
If W; > R; then R, <R,_1—R;,= R; < sz_l '/

« Goal: prove W, > R;
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Algorithm proof (core idea)

Theorem 1 Algorithm STORAGEGREEDY achieves a competitive ratio of [logn]+1 for the
online load demand balancing problem with storage, where n is the number of machines.
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Experimental setup

* TWO axis
1) Demand mix

Business-as-usual Moderate growth Smart house/neighborhood

8% 12% 3%
8%
15%

M Electricinelastic

B Thermal inelastic
27% M Electricelastic
8% B Thermal elastic
M Electric storage

12% 12% W Thermal storage

2) Number and type of households

* Comparison
* Longest Processing Time (LPT): sorts tasks by decreasing processing time and
then assigns each task to the machine that has the least load (breaking ties
arbitrarily)

CHALMERS (" Distributed Computing and Systems ~ Georgiadis, Papatriantafilou (2014) 15

<»“ Computer Science and Engineering



Experimental results
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What’s next?

* Mixed algorithms
 Communication with global optimizer
* Allow budget for scheduling over forecasted
* Call optimizer when over budget

* Strategic games
* New modeling extensions/applications
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Summary

e Background loads, threshold, online-ness (forecasts?)

* In focus: online load balancing with storage
* Energy dispatch: assignment/matching problem with guarantees
* Transformation of time and unforecastability: resource allocation
* High quality solution: analytical results and experiments based on
real data

* Next: cooperation, strategies, extensions
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