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Motivation
• Applications such as:

– Sensor networks
– Network Traffic Analysis
– Financial tickers
– Transaction Log Analysis
– Fraud Detection

• Require:
– Continuous processing of data streams
– Real Time Fashion
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Motivation

• Store and process is not feasible
– high-speed networks, nanoseconds to handle a packet
– ISP router: gigabytes of headers every hour,…

• Data Streaming:
– In memory
– Bounded resources
– Efficient one-pass analysis
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Main Memory

Motivation

• DBMS vs. DSMS

Disk
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Query Processing

3 Query 
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Database vs. Data Streaming

• Problem:
– James travels by car from A to B
– His grandmother is worried, she wants to know if 

he exceeds the speed limit

• How will the “database” and the “data 
streaming” grandmothers do this?
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Database vs. Data Streaming

Database 
grandmother

Start time
Position A

End time
Position B

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴,𝐵𝐵)
𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
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Database vs. Data Streaming

Database 
grandmother

1. First the data, then 
the query

2. Precise result
3. Need to store 

information
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Data streaming 
grandmother

Database vs. Data Streaming

1. First the query, 
then the data

2. “Continuous” result
3. No need to store 

information
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System Model

• Data Stream: unbounded sequence of tuples
– Example: Call Description Record (CDR)

time

Field Field

Caller text

Callee text

Time (secs) int

Price (€) double

A B 8:00 3 C D 8:20 7 A E 8:35 6

132014-04-09



System Model

• Operators:

OP Stateless
1 input tuple
1 output tuple

OP Stateful
1+ input tuple(s)
1 output tuple
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Stateless Operators

Map: transform tuples schema
Example: convert price € $

Filter: discard / route tuples
Example: route depending on price

Union: merge multiple streams
(sharing the same schema)

Example: merge CDRs from 
different sources

System Model
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Map

Filter

Union

…

…

2014-04-09



Stateful Operators

Aggregate: compute aggregate
functions (group-by)

Example: compute avg. call duration

Equijoin: match tuples from 2 streams
(equality predicate)

Example: match CDRs with same price

Cartesian Product: merge tuples from
2 streams (arbitrary predicate)

Example: match CDRs with prices in the
same range

System Model
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Aggregate

Equijoin2

Cartesian 
Product2
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System Model

• Infinite sequence of tuples / bounded memory
 windows

• Example: 1 hour windows

time
[8:00,9:00)

[8:20,9:20)

[8:40,9:40)

172014-04-09



System Model

• Infinite sequence of tuples / bounded memory
 windows

• Example: count tuples - 1 hour windows

time
[8:00,9:00)

8:05 8:15 8:22 8:45 9:05

Output: 4

18

[8:20,9:20)
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Continuous Query Example

• Fraud detection, High Mobility
– Spot mobile phone whose space and time distance between two 

consecutive calls is suspicious

Phone X
at 12:00

Phone X
at 12:03

CLONED 
NUMBER !
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High Mobility Continuous Query (1/2)

Field

Caller

Callee

Time

Duration

Price

Caller_Position

Callee_Position

Input Stream
Map

Remove fields
that are not needed

Field

Caller

Callee

Time

Duration

Caller_Position

Callee_Position
Map

Map

Create separate 
tuple for caller

Field

Phone number

Start time

End time

Position

Field

Phone number

Start time

End time

Position

Create separate 
tuple for callee

Union

Field

Phone number

Start time

End time

Position

Merge tuples
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High Mobility Continuous Query (2/2)

Union

Field

Phone number

Start time

End time

Position

Merge tuples

… Aggregate

For each consecutive pair of calls
referring to the same number
compute speed

Window type: tuple based
Window size: 2
Window Advance: 1

Field

Phone number

Time

Speed

Filter

Forward tuples with speed 
exceeding a given threshold

Field

Phone number

Time

Speed
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Centralized SPEs
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Distributed SPEs
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Inter-operator parallelism



Parallel SPEs
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… …
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Intra-operator parallelism

Over-provisioning or under-provisioning?



Elastic SPEs
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Scale up



Elastic SPEs
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Challenges in the context of Smart 
Grids

• Process energy consumption data

– Build profiles and spot deviations

– Predictions / forecasts about consumption
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Challenges in the context of Smart 
Grids

• Process control events

– Spot possible threats

– Monitor the devices status
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Challenges in the context of Smart 
Grids
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How to process 
the information?

Centralized



Challenges in the context of Smart 
Grids
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How to process 
the information?

Distributed
(In-network aggregation)



Challenges in the context of Smart 
Grids
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How to deal with 
constrained/limited
resources?

What if this device
is running out of 
battery?



An overview of Data Streaming
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Questions?
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