
Model-Based Testing
(DIT848 / DAT260)

Spring 2014
Lecture 16
Revision

Gerardo Schneider
Department of Computer Science and Engineering

Chalmers | University of Gothenburg

1

Revision requests…

�  Go through a previous exam

�  Give more examples of generators in QuickCheck

2

Exam MBT
Disclaimer!

�  Note that the following is only a sample of a previous
exam!

�  The precise content or format of the incoming exam
might be slightly different!

3

Exam MBT (General issues)
�  ALLOWED AID:

�  Books on testing
�  All lecture notes (including printouts of lectures’ slides)
�  Students own notes
�  English dictionary
�  NOT ALLOWED: Any form of electronic device

(dictionaries, agendas, computers, mobile phones, etc)

4

Exam MBT (General issues)
�  PLEASE OBSERVE THE FOLLOWING:

�  Motivate your answers (a simple statement of facts not
answering the question is considered to be invalid);

�  Start each task on a new paper;
�  Sort the tasks in order before handing them in;
�  Write your student code on each page and put the number of

the task on every paper;
�  Read carefully the section below “ABOUT THE FORMAT OF

THE EXAM”.

5

Exam MBT (General issues)
�  ABOUT THE FORMAT OF THE EXAM:

�  The exam consists of 5 tasks, each one concerned with a
specific part of the course content.

�  Each task is worth 20 points. In order to reach the level to
pass with 3 (G) you need at least 50 points out of the total,
and at least 6 points per task. To pass with 4 you need at
least 65 points out of the total, and at least 8 points per
task.

�  In order to pass with distinction (5/VG) you need to reach
at least 80 points out of the total, and you must score at
least 14 points per task.

�  IMPORTANT: Note that you should have a minimum
number of points per task in order to pass, so avoid
letting unanswered tasks. 6

Exam MBT – May 21, 2012

�  MBT-exam-2012-05-21.pdf

7

Task 1 -Test in general
Part 1

Solution

1. F – testing is always dynamic

2. T

3. F – debugging is testing + correcting the errors

4. F – This is the less advisable way to do it, according to
many experts

5. F – No, you don’t need a full implementation (you might
use some mock code)

10 min
8

Task 1 -Test in general
Part 2

10 min
9

Solution:

1. Acceptance test (g) (also during system test - e)

2. stress/system test (e) and also acceptance (g)

3. Combination of coverage analysis (c) and unit tests (b)

4. timing response test (system test - e)

5. configuration test (system test - e)

Some remarks:

�  Many other solutions depending on how much do you abstract
�  A ”good” solution should be abstract enough as to capture the informal description (but

not too much as to be useless)

�  ”logout” could be eliminated (as it is automatic)

�  No check on whether login is correct or not (not in the specification)

�  Implicit loop in state ”C” on ”look_for_provider”

Task 2 -State Machines
Part 1

Proposed Solution

A

H

D

logout

F

E

C B
login ask_for_ride

communicate_demander

provider_not found

G
send_sms_provider send_sms_demander

logout

10
7 min

�  Test cases you can extract:
1.  After login if there is provider then the demander gets an

sms indicating that.
2.  If no provider exists for that ride then the user is logged

out after getting a notification.

�  Test cases you cannot extract:
1.  If a provider does exist for the ride, the user may still not

get the guarantee of a ride due to overbooking.
2.  Any timing constraints in what concerns how much time to

wait for getting a confirmation of a ride.
11

Task 2 -State Machines
Part 2 Proposed Solution

5 min

Some remarks:

�  Brackets (”[.]”) are used as a short for ”If ... then …”

�  t: timer; c: number of times a demander may request a ride; p: nr of passengers
(stored in the DB; get using ”get_p”)

�  Assumption: the timer is automatically incremented (implicit loop in state E)

A

J

D

[t=30]

F

E

C B
login

c:=0

[c<=5] put_in_queue ; t:=0

provider_not found; c:=c+1

G

sms_provider

[p>=4] communicate_demander

provider_found; get_p
logout

ask_for_ride

logout
I H

sms_demander

[c>5] logout

[p<4] p:=p+1

12

Task 2 -State Machines
Part 3 Proposed Solution

10 min

Task 3 –White box testing and coverage
Part 1

15 min
13

Solution

a.  a-b-g (not finishing in the final state though
-> a-c-d-e)

b.  (Considering the state as being
between the transitions)
s1: d-a, d-e
s2: a-b, a-c
s3: c-d, g-d
s4: e-g, e-f, b-g, b-f, f-f, f-g

c.  e,
a-b

NOTE: The definition doesn’t allow to
repeat a configuration (state) so any other
sequence is not included as they must pass
through S1

d.  Add to the above
visiting “f” too

e.  a-b-g-d-e-f,
a-c-d-e

Task 3 –White box testing and coverage
Part 2

15 min
14

Solution

a.  Deterministic (i), initially connected (ii), minimal (iii),
strongly connected (iv)

b.  Add copies of transitions a, g, d
(e.g: a-c-d-e-f-g-d’-a’-b-g’-d’’)

c.  Transform the graph using de Brujin’s algorithm (dual
graph) and then ”Eulerize” it (see lecture 7)

Task 4 –MBT / ModelJUnit

15 min
15

Solution

1.  F – you should aim at least at
a 100% transition coverage

2.  F – You might use
transformation and
adaptation.

3.  F – you might need to change
the code

4.  F – this is the case for the
transformation, not the
adaptation

5.  T

6.  T

7.  T

8.  T

9.  F – It doesn’t as there
might be many branches in
the SUT abstracted away
in the EFSM

10. F – Transition-based is
control oriented, while
pre/post is data-oriented.

Task 5 – Property-based test. and QuickCheck
Part 1

20 min
16

Solution

a.  prop_delete1 x t =
 delete x (delete x t) == delete x t

b.  prop_delete2 x t = not (member x t) ==>
 flatten (delete x (insert x t)) == flatten t

(Note that the it is not necessarily true that you get the same tree!)

c.  prop_delete3 x t = (member x t) ==>
 (flatten (insert x (delete x t)) == flatten t)
(Note that the it is not necessarily true that you get the same tree!)

d.  (The statement should be read as “Write a property that checks that
2 BSTs are not equal if they don’t contain the same elements.”)
prop_equal t1 t2 =
 not (flatten t1 == flatten t2) ==> t1 /= t2

Task 5 – Property-based test. and QuickCheck
Part 2

20 min
17

Solution

a.  F – you write properties, not necessarily a full model.

b.  T

c.  F – There is no guarantee of getting the same tree. You
should write:
prop_merge1 x y t1 t2 = flatten (merge (insert x t1)
(insert y t2)) == flatten (insert x (insert y (merge t1 t2)))

d.  F - The problem is that the symbols < and > are
interchanged. You should make the following change:
“&& all (<y) (flatten lt) && all (>y) (flatten rt)”

2nd request:
Generators in QuickCheck

Write a generator that generates non-empty lists of integers of
arbitrary size satisfying the following constraints:

1. The list is sorted.
2. The first element of the list is a random number between 1 and 100.
3. Each element of the list is randomly generated in such a way that the
element is bigger than the previous one and it differs at most in 100
from the previous one.

That is, if [a1, a2, …, an] is a list generated according to the above
specification, then it should satisfy that:

0< a1 <= 100, and
0< ai+1 - ai <= 100 (for 0<i<n-1)

The following is a valid example of a generated list: [87, 122, 123, 222].
On the other hand, the lists [2, 104, 105, 200] , [105, 106, 110, 201] and
[77, 56, 139, 150] are not valid.

18 * Task 2-2) of exam June 1st, 2013 (MBT-exam-2013-06-1.pdf) 20 min

Generators in QuickCheck
Proposed Solution (1)

import Test.QuickCheck

import Data.List

genListSorted :: Gen [Int]

genListSorted = do

 intlist <- listOf1 (elements [1..100])

 return (tail (map sum (inits intlist)))

main = sample genListSorted
19 * Solution by Grégoire Détrez

Generators in QuickCheck
Proposed Solution (2)

import Test.QuickCheck

import Test.QuickCheck.Gen

size = 10

arb :: Gen [Int]

arb = do

 x <- choose (1,100)

 l <- choose (1,size)

 xs <- arb' x

 return $ take l xs
20 * Solution by Magnus Ågren

arb' y = do

 z <- choose (y+1, y+100)

 ys <- arb' z

 return (y:ys)

Exam

�  May 28, at 08:30 (Lindholmen)

�  Remember you need to have passed all the assignments
in order to be able to take the exam!
�  Talk with Grégoire if for some reason you don’t satisfy

the above requirement

21

