
TDD

Breaking Dependencies



Volvo IT

2
2

Design properties and Design goals

For Units: 
• Modularity 
• High cohesion 
• Low coupling 
For Tests: 
• Modularity 
• Locality

Unit Under Test
(UUT)Test



Volvo IT

3
3

But what about units that depend on 
other units (with potential side effects)?

Unit Under Test

Data Access
Object

insert
update
delete
get

RDBMS



Volvo IT

4
4

Strategies for testing Units that depend on 
other units

• Break the dependency: Let the Test create a synthetic ‘Mock’ context 
• Run and test the Unit within it’s natural context (In Container in the case 

of Java EE or .NET) 
• Let the Test create the real context

Unit Under Test
(UUT)Test Dependee



Volvo IT

5
5

Synthetic context – MockObjects

• Implements the same interface as the resource that it represents 
• Enables configuration of its behavior from outside (i.e. from the test class, in 

order to achieve locality) 
• Enables registering and verifying expectations on how the resource is used



Volvo IT

6
6

Frameworks and tools for creating 
• code.google.com/p/mockito/ 

– No expect-run-verify also means that Mockito mocks are often 

ready without expensive setup upfront 

• www.mockobjects.org 
– Commonly used assertions refactored into a number of 

Expectation classes, which facilitate writing Mock Objects. 

• www.mockmaker.org 
– Tool which automatically generates a MockObject from a Class 

or Interface 

• www.easymock.org 
– Class library which generates Mock Objects dynamically using 

the Java Proxy class



Volvo IT

7
7

• Mocks concrete classes as well as interfaces  
• Little annotation syntax sugar - @Mock  
• Verification errors are clean - click on stack trace to see failed verification in 

test; click on exception's cause to navigate to actual interaction in code. Stack 
trace is always clean.  

• Allows flexible verification in order (e.g: verify in order what you want, not every 
single interaction)  

• Supports exact-number-of-times and at-least-once verification  
• Flexible verification or stubbing using argument matchers (anyObject(), 

anyString() or refEq() for reflection-based equality matching)  



Volvo IT

8
8

Example usage
!!!
@Test	
public void testNotificationVetoShouldBeHonoured() {	
    int amount = AccountImpl.SUPERVISION_TRESHOLD;	!
    Supervisor mockSupervisor = Mockito.mock(Supervisor.class);	!
    Mockito.when(mockSupervisor.notify(Mockito.anyString(), 	
        Mockito.anyString(), (Transaction) Mockito.anyObject())).thenReturn(false);	!
    account.setSupervisor(mockSupervisor);	!
    try {	
        account.deposit(amount);	
        Assert.fail("SupervisorException expected");	
    } catch (SupervisorException expected) {	
        // expected	
        System.err.println(expected);	
    }	!
    Mockito.verify(mockSupervisor).notify(account.getAccountID(), account.getOwnerName(),	
        new Transaction(Transaction.DEPOSIT, amount));	
}

• Create MockObject 
• Let the mock object know how to answer on an expected call 
• Inject the MockObject in the class to be tested 
• Run the test 
• Verify that the mock object received the expected calls and parameters



Volvo IT

10
10

Typical usage scenario for 
Mock Objects in a TestCase

1. Instantiate mockobjects 
2. Set up state in mockobjects, which govern their behavior 
3. Set up expectations on mock objects 
4. Execute the method(s) on the Unit Under Test, using the mockobjects as 

resources 
5. Verify the results 
6. Verify the expectations



Volvo IT

11
11

Mockito Example in JVS Pos

• com.volvo.jvs.pos.client.w.order.actions. AbstractMockStrutsTestCase



Volvo IT

12
12

Exercise 7

• Extend the tests for AccountImpl to use Mockito for validating correct usage of 
the Supervisor collaborator!



Volvo IT

13
13

When to use Mock Objects (and when not to)

• Mock Objects are great for 
– Breaking dependencies between well-architected layers or tiers 
– Testing corner cases and exceptional behaviour 

• Mock Objects are less ideal for 
– Replacing awkward 3rd party APIs 
– Responsibilities which involves large amounts of state or data, which could be 

more conveniently expressed in a ”native” format 
• This is clearly a judgement call: If breaking a dependency using mock objects cost more 

effort than living with the dependency, then the mock strategy is probably not a good 
idea



Volvo IT

14
14

Designing for Testability : 
Law of Demeter   (LoD or principle of least knowledge)

• Any method should have limited knowledge about its surrounding object 
structure. 

• Named in honor of Demeter, “distribution-mother”, Greek goddess of agriculture 
• Hence 
       public class SomeUnit 
   { 
        private IDependee dependee; 
        public SomeUnit() 
        { 
            this.dependee = new Dependee(); 
        } 
        ... 
    }



Volvo IT

15
15

Law of Demeter (Contd.)

• becomes 
 public class SomeUnit 
    { 
        private IDependee dependee; 
        public SomeUnit() 
        { 
        } 
        public SetDependee(IDependee dependee) 
        { 
            this.dependee = dependee; 
        } 
        ... 
    }



Volvo IT

16
16

Designing for Testability : 
LoD - Don’t Talk To Strangers

• If there are no strong reasons why two classes should talk to each other 
directly, they shouldn’t!

becomes

Unit Under Test
(UUT) Dependee

«interface»
IDependee

Unit Under Test
(UUT) Dependee



Volvo IT

17 Date
Department, Name, Security Class

• What is it? 
– Dependency Management 
– Dependency Injection provides a mechanism for managing  

dependencies between components in a decoupled way 
• Makes it easier to unit test components in isolation 

– Out of container and with mocked dependencies

Designing for Testability : 
Dependency Injection


