
Introduction to  
Test Driven Development 

and Unit Testing in Eclipse

Volvo IT

2
2

Unit Tests

• Black-box or White-box test of a logical unit, which verifies that the logical unit
behaves correctly – honors its contract.

Volvo IT

3
3

What exactly is a Unit Test?

• A self-contained software module (in OO languages typically a Class)
containing one or more test scenarios which tests a Unit Under Test in
isolation.

• Each test scenario is autonomous, and tests a separate aspect of the Unit
Under Test.

PlantStructureService PlantStructureDAOPlantStructureServiceTest

Data

Volvo IT

4
4

Smoke Tests

• A set of Unit Tests (which tests a set of logical units) executed as a whole
provides a way to perform a Smoke Test: Turn it on, and make sure that it
doesn’t come smoke out of it!

• A relatively cheap way to see that the units “seems to be working and fit
together”, even though there are no guarantees for its overall function (which
requires functional testing)

Volvo IT

5
5

Developer testing vs Acceptance testing

!
• Unit Tests are written by developers, for developers.
!

• Unit Tests do not address formal validation and verification of correctness (even though
it has indirect impact on it!) - Unit Tests prove that some code does what we intended it
to do
!

• Unit Tests complements Acceptance Tests (it does not replace it)

Volvo IT

6
6

Why should I (as a Developer) bother?

• Well-tested code works better. Customers like it better.
• Tests support refactoring. Since we want to ship useful function early and often, we

know that we'll be evolving the design with refactoring.
• Tests give us confidence. We're able to work with less stress, and we're not afraid to

experiment as we go.
• Hence Unit Testing will make my life easier

– It will make my design better
– It will give me the confidence needed to refactor when necessary
– It will dramatically reduce the time I spend with the debugger
– It will make me sleep better when deadlines are closing in

Volvo IT

7
7

Requirements on Unit Tests

• Easy to write a test class
• Easy to find test classes
• Easy to test different aspects of a contract
• Easy to maintain tests
• Easy to run tests

Volvo IT

8
8

XUnit: A Framework for Unit Tests
• www.junit.org
• www.csunit.org
• www.vbunit.org
• cppunit.sourceforge.net

Volvo IT

9
9

JUnit Test Example
public interface Account {	
 public void deposit(int amount);	
 public void withdraw(int amount) throws AccountException;	
 public int getBalance();	
 …  
} !
public class AccountImplTest {	
 @Test	
 public void testWithdraw() throws AccountException {	
 AccountImpl account = new AccountImpl(“1234-9999”, 2000);	
 account.withdraw(300);	
 Assert.assertEquals(1700, account.getBalance());	
 }	!
 @Test	
 public void testWithdrawTooMuch() throws AccountException { … }	
 …  
}

Volvo IT

10
10

Naming Conventions and Directory Structure

• Unit Tests should be named after the Unit that is tested, with "Test"
appended. 
A class usually represents a noun, it is a model of a concept. An instance of
one of your tests would be a 'MyUnit test'. In contrast, a method would
model some kind of action, like 'test [the] calculate [method]'.

• the MyUnit test -->
MyUnitTest

• test the calculate method -->
testCalculate()

• JUnit Tests should be placed
within the same Java package
as the Unit under Test, but in
a different directory structure.

Volvo IT

11
11

Test cases and test methods
import org.junit.Assert;	
import org.junit.Before;	
import org.junit.Test;	!
public class AccountImplTest {	
 @Test	
 public void testWithdraw() throws AccountException {	
 AccountImpl account = new AccountImpl(“1234-9999”, 2000);	
 account.withdraw(300);	
 Assert.assertEquals(1700, account.getBalance());	
 }	!
 @Test	
 public void testWithdrawTooMuch() throws AccountException { … }	
 …  
}

All methods annotated with

@Test are considered test

scenarios

Volvo IT

12
12

Assert: Support for verifying conditions
• static void assertEquals(int expected, int actual)  

 Asserts that two ints are equal.

• static void assertEquals(double expected, double actual, double delta)  
 Asserts that two doubles are equal concerning a delta.

• static void assertEquals(java.lang.Object expected, java.lang.Object actual)  
 Asserts that two objects are equal.

• static void assertFalse(java.lang.String message, boolean condition)  
 Asserts that a condition is false.

• static void assertTrue (java.lang.String message, boolean condition)  
 Asserts that a condition is true.

• static void assertNull(java.lang.String message, java.lang.Object object)  
 Asserts that an object is null.

• static void assertNotNull(java.lang.String message, java.lang.Object object)  
 Asserts that an object isn't null.

!
• Etc…

Volvo IT

13
13

Executing JUnit Tests: Test Runners

Volvo IT

14
14

Exercise 1 description

Volvo IT

14
14

Exercise 1

Sometimes you need to write Unit tests to already existing software when you
want to implement a change request e.t.c. In this example we have the source
code but no tests, your task is to write them.
!

• Create an Unit test case which tests the initial balance of an Account (i e. tests
the constructor and GetBalance() method of Account).

	 @Test	
	 public void testInitialBalance() { … }	!
• Add tests for the Deposit() method of Account.
 @Test	
 public void testDeposit() { … }	

Volvo IT

15
15

Typical unit test scenario  
– The Three A’s

1. Arrange - Instantiate Unit under Test and set up test data

2. Act - Execute one or more methods on the Unit Under Test

3. Assert - Verify the results
public interface Account {	
 public void deposit(int amount);	
 public void withdraw(int amount) throws AccountException;	
 public int getBalance();	
 …  
}	
public class AccountImplTest {	
 @Test	
 public void testWithdraw() throws AccountException {	
 AccountImpl account = new AccountImpl(“1234-9999”, 2000); 	 // ARRANGE	
 account.withdraw(300);	 	 	 	 	 	 	 	 // ACT	
 Assert.assertEquals(1700, account.getBalance());	 	 	 // ASSERT	
 }	
	 … … …	
}	

Volvo IT

16
16

General Rules of Thumb
• Create a single test class for each non-trivial application class you have.
• Give a readable, meaningful name to each test method. A good name candidates are to name

the test method using the same name as the method that it is testing, with some additional
info appended to the name. For instance if testing a method called "Withdraw" in an Account
class, create a few test methods to test different ways of withdrawal:
!

	 @Test	
 	 public void testWithdrawTooMuch() throws AccountException {…}	

	 @Test	
 	 public void withdrawBigAmount() throws AccountException {…}	

	 @Test	
 	 public void withdrawNegativeAmount() throws AccountException {…}	!
• The scope of how much checking to do in a single test case (test method) is a judgment call.

It is usually better to test only one scenario (and hence one potential error condition) in each
test method. Remember : tests should be “to the point”.

Volvo IT

17
17

Setup and teardown

• Methods annotated with @Before are executed before every test method.
• Methods annotated with @After are executed after every test method.
!

public class AccountImplTest {	!
	 private AccountImpl account;	!
	 @Before	
	 public void setUp() {	
	 	 account = new AccountImpl(“1234-9999", 2000);	
	 }	
	 @Test	
	 public void testInitialBalance() {	
	 	 int actualBalance = account.getBalance();	
	 	 Assert.assertEquals(2000, actualBalance);	
	 }	
	 @Test	
	 public void testWithdraw() throws AccountException {	
	 	 account.withdraw(300);	
 		 int actualBalance = account.getBalance();	
	 	 Assert.assertEquals(1700, actualBalance);	
	 }	
 …  
}

Volvo IT

18
18

Working with Exceptions

• Unexpected exceptions thrown during execution of a test will be caught by the
JUnit framework and reported as Errors (i.e. test will fail)

• A Test method must declare that it throws any checked exceptions that the Unit
under Test may throw. If there are several checked exceptions that may occur,
it is perfectly valid for a test method to declare throwing java.lang.Exception.

• Expected exceptions (exceptions that the test is expecting the Unit under Test
should throw in a certain situation) are expressed using the
@Test(expected=ExpectedException.class) attribute

 @Test(expected=NastyException.class)

 public void doSomethingNastyTest() {

 SomeUnit target = new SomeUnit();

 target.doSomethingNasty();

 }

Volvo IT

19
19

Working with Exceptions (Contd.)

• Or using the following idiom:
!
SomeUnit target = new SomeUnit();

try {

 target.doSomethingNasty();

 Assert.fail("NastyException expected");

} catch (NastyException expected) {

 // Expected

}

• Assert.assertTrue("Invariant violated",
target.IsValid());

Volvo IT

20
20

Ignore a Test

• To temporary ignore a test, use the Ignore attribute:
!

 @Test

 @Ignore("No, not right now but most definitely later")

 public void testThatDoesntWorkYet(){

 SomeUnit target = new SomeUnit();

 target.doSomethingThatDoesntWork();

 Assert.assertTrue(target.isValid());

 }

Volvo IT

21
21

Exercise 2

• Refactor your test data from the last example into a @Before setUp() method
• Add tests for the withdraw() method.

Volvo IT

21
21

Testing private or protected methods/members

In principle you got four options
!
• Don't test private methods. (Good or Bad?)
• Give the methods package access. (Good or Bad?)
• Use a nested test class. (Does it work?)
• Use reflection. (Is this good?)
!

http://stackoverflow.com/questions/34571/whats-the-proper-way-to-test-a-class-
with-private-methods-using-junit

http://stackoverflow.com/questions/34571/whats-the-proper-way-to-test-a-class-with-private-methods-using-junit

Volvo IT

21
21

Testing private or protected methods/members

The best way to test a private method is via another public method. If this cannot
be done, then one of the following conditions is true:
 1. The private method is dead code
 2. There is a design smell near the class that you are testing
 3. The method that you are trying to test should not be private
!

When I have private methods in a class that is sufficiently complicated that I feel
the need to test the private methods directly, that could be a code smell: my class
is too complicated.
But, it might also be SDK or Framework code or Security or encryption/decryption
code. That type of code also need tests, but no publicity…

Volvo IT

22
22

Testing protected methods (Java)
• Protected methods are visible by default when using the same parallel package structure for

tests.
• The Subclass and Override idiom is used to write unit tests for protected methods:

public class MyClass {	
	 protected String myProtectedMethod (String s) {	
	 	 return "MyClass: " + s; }	
}	
public class MyClassTest {	
	 @Test	
	 public void TestProtectedMethod() {	
	 	 String expected = " MyClass: Hello";	
	 	 MyClass unitUnderTest = new MyClass() {	
	 	 	 public String myProtectedMethod(String s) {	
	 	 	 	 return super.myProtectedMethod(s);	
	 	 	 }	
	 	 };	
	 	 String actual = unitUnderTest.myProtectedMethod("Hello");	
	 	 Assert.assertTrue("Strings not equal", actual.equalsIgnoreCase(expected));	
	 }	
}

Volvo IT

23
23

Testing Interfaces or Abstract Classes (Java only)

• Sometimes, you want to write tests for an Interface or Abstract Class, and have those
tests executed against all implementations.

• Specify the tests in an Abstract Test class, with one concrete Test class for each
concrete implementation

Volvo IT

24
24

Testing Interfaces - Java example

public abstract class AbstractSomeInterfaceTest {	
 private SomeInterface unitUnderTest;	
 @Before	
 public void setUp() {	
 unitUnderTest = createSomeInterface();	
 }	
 @Test 	
 public void testSomeMethodReturnsTrue () {	
 Assert.assertTrue("SomeMethod() should return true", unitUnderTest.SomeMethod());	
 }	
 protected abstract SomeInterface createSomeInterface();	
}	!
public class ImplementationXTest extends AbstractSomeInterfaceTest {	!
	 @Override	
	 protected SomeInterface createSomeInterface() {	
 return new ImplementationX();	
	 }	!
}

Volvo IT

25
25

Exercise 3 - As Demo

• Refactor your test case from the last example into an abstract test case for the
interface Account, with a concrete test of the Account implementation

Volvo IT

26
26

What should be tested?

• Everything that could possibly break!
• Corollary: Don’t test stuff that is too simple to break!
• Typical problematic areas:

– Boundary conditions
• Conformance
• Ordering
• Range
• Reference
• Existence
• Cardinality

Volvo IT

27
27

Exercise 4

• Given the following interface for a fax sender service: !
 /* Send the named file as a fax to the given phone number.	
 * Phone numbers should be of the form 0nn-nnnnnn where n is	
 * digit in the range [0-9]	
 */ 	
public boolean SendFax(String phone, String filename);	
!

• What tests for boundary conditions can you think of?

