Model-Based Testing

(DIT848 / DAT260)
Spring 2014

Lecture 13
EFSMs and Executable Tests
(in ModelJUnit)

Gerardo Schneider
Department of Computer Science and Engineering
Chalmers | University of Gothenburg

Summary of previous lecture

® The Qui-Donc example
® Modeling Qui-Donc with an FSM

® Some simple techniques on how to generate tests from
the Qui-Donc model

* EFSM
® The ModelJUnit library

® A Java "implementation” of an EFSM for the Qui-Donc
example

® Offline testing (not executable)

Outline

® More interactive exercises on building an EFSM
® Partial solution to the 1st part of Assignment 4

® Executable tests

® Online testing with ModelJ Unit

EFSM for Calculator (v.1)

Write an EFSM for a calculator accepting (positive) integers,
different operators (*, +, -, /), a reset operation, and
parenthesis

Assume numbers are full integers (not a string of digits)

Assume that there is no need to check for division by zero

The result is given when entering "=" (no need to “calculate” the
result)

After pressing "=" the result should be given and the calculator
IS reset

® Te.,itisnot Fossible enter an expression "1+2=+4" and expect to
get 7 as result (computing 1+2 first and adding 4 to the result)

For this first version: Assume that inputs with only one
_ operator between two operands is accepted (i.e. somethi
" is not accepted) ¢

EFSM for Calculator (v.1)

lparen/c++

lparen/c++ /n

EFSM for Calculator (v.2)

® Modify the previous EFSM to allow any number of
operators between two operands

® The last operator is the one being considered, all the
others being discarded

EFSM for Calculator (v.2)

lparen/c++

EFSM for Calculator (v.3)

® Modify the previous calculator by replacing “full integers”
by entering digit by digit

® The EFSM should handle digits individually to “build” the
Integer

EFSM for Calculator (v.3)

Iparen/c++

EFSM for Calculator (v.4)

®* Write a more concrete EFSM expressing more operational
properties so the evaluation of expressions are done more

explicitly

® You should be able to check for division by zero

® Hint: You might use a stack to store operands and to store
partial results

EFSM for Calculator (v.4) - sketch

® (Operands are pushed into a stack as they are read
® The 'current' operator is stored in a variable lastOp
® The operation calcOp pops two elements off the stack and performs the operation in lastOp

® Both push and calcOp need to be sensitive to the
current nesting level (which is the counter c), so this
implies we should keep a separate stack for every
nesting level, and calcOp should push its result in the
stack of the outer level (c-1) except for the N -> Oﬁ and
N -> R transitions, where the result should be pushed in
the current stack

lparen/c++

Remark: In the assignment
you need a different EFSM
(The solution shown here is
very much linked to an
iImplementation using stack,
and doesn’t explicit address
division by zero)

Making your tests executable

® Usually tests extracted from an (E)FSM are quite abstract ->
need to make them executable

® The API of the model doesn't match the API of the SUT

® Some common abstractions make difficult such match
® Model one aspect of SUT, not whole behavior

Omit inputs and outputs which are not relevant

Simplify complex data structures

Assume SUT is in the correct state for the test

Define one model action as representing a sequence of SUT
actions

® We must initialize the SUT, add missing details and fix
mistmatches between the APIs

tization phase may take as much tim

How to Concretize Abstract Tests

® To check SUT outputs we must either:

® Transform the expected outputs from the model into
concrete values

® Get concrete outputs from the SUT and transform them
intfo abstract values at the model

Some issues:
® Objects in SUT -> must keep track of identity (not only values)

® Need to maintain a map between abstract and concrete
objects

® Each time model creates a new abstract value A -> SUT p
~creates a concrete object C (add pair (A,C) to the ma

How to Concretize Abstract Tests

® Adaptation: Write a wrapper (adaptor) around the SUT to
provide a more abstract view of SUT

® Transformation: Transform abstract tests into concrete
test scripts

The Adaptation Approach

® The adaptor code act as an interpreter for abstract

operation calls of model, executing them in SUT (on-the-
fly while abstract tests are generated)

Adaptors responsible for:
® Setup: configuring and initializing the SUT

® Concretization: translate model abstract operation call
(and inputs) into SUT concrete calls (and inputs)

® Abstraction: translate back concrete results into
abstract values to the model

rdown: shut down SUT at end of each test sui

The Transformation Approach

® Test scripts are produced in the transformation approach
to transform each abstract test into an executable one

What is needed:

® Setup and teardown code at the beginning and end of
each test sequence

® A complex template: many SUT operations to implement 1
abstract operation; trap SUT exceptions to check
whether expected or not, etc

® A mapping from each abstract value to a concrete one

om

Which Approach is Better?

® Adaptation better for online testing

® Tightly integrated, fwo-way connection between MBT tool
and SUT

® Transformation has the advantage of producing tests
scripts in the same language (same naming, structure) as
used in manual tests

® Good for offline testing (less disruption)

® Good to combine both (mixed)

® Abstract tests transformed into executable test scripts
which call an adaptor layer to handle low-level SUT

~_operations

Online Testing in ModelJUnit
Example: set<string>

Implementation of Set<String>
Note: In the following

: i slides we do not include
¢ StringSet.java R e -
® A simple implementation of a set of strings 2ee the distribution for

® SimpleSet.java
® A simplified model of a set of elements

® Only the model (no adapter): could be used to generate
offline tests

® The model assumes a set with maximum two elements

© SimpleSetWithAdaptor.java
® |ike SimpleSet but with adaptor code
- ® Allow to do online testing of a Set<String> implementation

Online Testing in ModelJUnit
Implementation: StringSet

public class StringSet extends AbstractSet<String>
{ private ArrayList<String> contents = new ArrayList<String>();

@Override
public Iterator<String> iterator()
{ return contents.iterator(); }

@Override
public int size()
{ return contents.size(); }

@Override
public boolean equals(Object arg0)
{ boolean same = false;
if (arg0 instanceof Set) {
Set<String> other = (Set<String>) arg0;
same = size() == other.size();

for (int i = contents.size() - 1; same && i>=0; i--) {

if ('other.contains(contents.get(i)))
same = false; } }
return same; }

@Override
public void clear()

@Override
public boolean contains(Object arg0)
{ for (int i = contents.size() - 1; i >=0; i--) {
if (contents.get(i).equals(arg0))
return true; } // return immediately
return false; } // none match

@Override
public boolean isEmpty()
{ return contents.size() == 0; }

@Override
public boolean add(String e)
{if (e ==null) {
throw new NullPointerException(); }
if (contents.contains(e)) {
return false; }
else {

return contents.add(e); } } // always adds to end

@Override
public boolean remove(Object o)
{ if (contents.isEmpty())
return false;
else
return contents.remove(o); }

}

* Examples and source codes from the ModelJUnit distribution (under
subdirectory "examples2.0")- Copyright (C) 2007 Mark Utting

{ contents.clear(); }

Online Testing in ModelJUnit
EFSM (2-elem set)

Set: S ={sl, s2}
removeS1

RCPI"ZSCHTGTiOH: _ removeS2
S = <x,y>, where x=T if sl in ‘A

Sandy=Tif s2in S o @’

4 states: N
® FF -> S is empty
FT -> 5 contains s2 removes2 removeS1

TF -=> S contains sl
TT -> S contains both @ @’
sl and s2

Actions: removeS1, addS1,
removeS2, addS2, reset

o have not added the "reset” action from each state to

b} My
and | | and adda 1
na 1 1),

Online Testing in ModelJUnit
EFSM: simpleSet

® So, in the ModelJUnit implementation of the seft, instead
of changing state explicitly, actions simply states how the
"internal” variables change

® addS1() -> is applicable only from a state where sl becomes
True

®* removeS1() -> is only enabled from a state where after
applying the action s1 becomes false

Online Testing in ModelJUnit
EFSM: simpleSet

public class SimpleSet implements FsmModel 4 states: TT,

{ protected boolean s1, s2; TF, FT, FF
public Object getState() reset transition
{return (s1?"T":"F") +(s2?"T": "F"); } from all states

to FF

public void reset(boolean testing)
{s1 =false; s2 = false; }

Define action to add
elem S1 to set:
from any state to

@Action public void addS1() {s1 = true;} the state TX
@Action public void addS2() {s2 = true;}

: : : _ : Define action to
@Action public void removeS1() {s1 = false;} remove elem S1:

@Action public void removeS2() {s2 = false;} from any state to

the state FX

public static void main(String[] args)

{ Tester tester = new GreedyTester(new SimpleSet()); Example to
tester.addListener(new Verboselistener()); generate
tester.generate(100); } tests from

} the model

* Examples and source codes from the ModelJUnit distribution (r:
subdirectory "examples2.0")- Copyright (C) 2007 Mark Utting

Online Testing in ModelJUnit
EFSM with Adap’ror: SimpleSetWithAdaptor

public class SimpleSetWithAdaptor implements FsmModel
Test data for the SUT

protected Set<String> sut_;
protected boolean sl, s2;

protected String strl = "some string"; Tests a StringSet implementation

protected String str2 =""; // empty string (sut_)
public SimpleSetWithAdaptor()

{ sut_ = new StringSet(); } Concrete operation in
SUT for the abstract
public Object getState() (EFSM) operation

{ return (51 ? ||-|-|| : ”F") n (52 ? ||-|-|| : "F”),' } ‘reset

public void reset(boolean testing
{ s1 = false;
s2 = false;
sut_.clear(); }

Concrete operation in
SUT for the abstract
gEFSM) operation
’addS1”

@Action public void addS1() Check SUT in right

{sl=true;
sut_.add(strl);
checkSUT(); }

* Examples and source codes from the ModelJUnit distribution («rJer
subdirectory "examples2.0")- Copyright (C) 2007 Mark Utting

Online Testing in ModelJUnit
EFSM with Adap’ror: SimpleSetWithAdaptor

@Action public void addS2()
{ Assert.assertEquals(!s2, sut_.add(str2)); //sut_.add(str2);

s2 = true; How to test the result

checkSUT(); } of sut_.add(.) — (in_

EFSM state whether s2 is

@Action public void removeS1() Concrete operation in fﬂ;?e'riéﬂ?a?(','na)dd(" n
{s1 = false; SUT for the abstract

sut_.remove(strl); ‘}EFSM) ng’[‘atlon

heckSUT(); remove .

enee : Check SUT in

@Action public void removeS2() expected state

{ Assert.assertEquals(s2, sut_.remove(str2)); //sut_.remove(str2);
s2 = false;
checkSUT(); }

Check size of model
protected void checkSUT/() and implementaion is

{intsize=(s1?1:0)+(s2?1:0); the same
Assert.assertEquals(size, sut_.size());
Assert.assertEquals(s1, sut_.contains(strl));

Assert.assertEquals(s2, sut_.contains(str2)); Ileil_:l_Sltlll‘ln S.tatGi' Wherte
Assert.assertEquals(!s1 && !s2, sut_.isEmpty()); sh_ ’Id :n.'mg (imen .
Assert.assertEquals(!s1 && s2, sut_.equals(Collections.singleton(str2))); } shou € In state

where str2 is in the set

public static void main(String[] args)

{ Set<String> sut = new StringSetBuggy(); // StringSetBuggy();
Tester tester = new GreedyTester(new SimpleSetWithAdaptor(sut)); Example of generating
tester.addListener(new Verboselistener()); tests from tEis model
tester.addCoverageMetric(new TransitionCoverage());

tester.generate(50); " T—
- : Examples and source codes from the ModelJUnit distribution (“4:
tester.printCoverage(); } } subdiree:‘ror'y “examples2.0")- Copyright (C) 2007 Mark Utting

Online Testing in ModelJUnit
Additional Remarks

. , , ® You can add code to
* ModelJUnit, an iterative measure coverage, traverse

process. the model using specific
algorithms, etc

getstate() ->

evaluate guard ->

execute action ->

® The code is automatically
added when using the “Test
Configuration” in

update internal state ->... ModelTUnit

° At QQCh moment it is ® In some applications you
pOSSIb|e to relate with the have to modify the code too
SUT and check its state (not in the StringSet

~ through the adaptor example)

Assignment 4

You will have to:
® Define the EFSM of a complex calculator

® Encode it in ModelJUnit

®* Write an adaptor

® Execute online tests to find errors, using some of
ModelJUnit traversal algorithms

® Define (and measure) state and transition coverage

About next lectures...

* This afternoon, Mon May 12 (9:15-12:00), and Wed May 14
morning (10:15- 12:00) -> Assugnmen'r 4

°* Wed May 14 (13:15-17:00): TDD 1 (Guest lectures by
Micael Andersson from Volvo IT)

® Mon May 19 (9:15-12:00): TDD 2 (Guest lectures by
Micael Andersson from Volvo IT)

® Remember to bring your laptop for TDD lectures! (And
have everything installed as instructed by Grégoire)

IMPORTANT: Please contact your student representatives

before Tue May 13 at noon to decide whether (and what)

want to see in the revision lectures (Wed May 2L
afternoon)

References

®* M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007

® Sections 5.3 and 8.1

