
Model-Based Testing
(DIT848 / DAT260)

Spring 2014
Lecture 10

Selecting your tests

Gerardo Schneider
Department of Computer Science and Engineering

Chalmers | University of Gothenburg

 1

About coverage criteria
�  Test selection criteria help to design black-box test suites

�  They do not depend on the SUT code

�  Model coverage criteria and SUT code coverage are
complementary

�  In white-box testing, coverage criteria are used for:
�  Measuring the adequacy of test suite
�  Deciding when to stop testing

�  Coverage criteria may be used prescriptively
�  ”Try to cover all branches”

�  Test generation tools can provide metrics on how well the
coverage was, and which parts of the model were not covered

2

Test selection criteria

1.  Structural model coverage criteria

2.  Data coverage criteria

3.  Fault-model criteria

4.  Requirements-based criteria

5.  Explicit test case specifications

6.  Statistical test generation methods

3

Focus on the
first 2

Not much
about the

rest

1. Structural model coverage

�  Major issue: measure and maximize coverage of the
model
�  Not of the SUT

�  Different “families” of structural model coverage
criteria:
1.  Control-flow-oriented coverage criteria
2.  Data-flow-oriented coverage criteria
3.  Transition-based coverage criteria
4.  UML-based coverage criteria

Focus
on the
first 3

4

1. Structural model coverage
1.1 Control-flow oriented

�  The control-flow oriented criteria we will see are mostly
for pre/post notations
�  E.g., Statement Coverage (SC) not relevant in FSM -> rather

talk about all-states or all-transitions coverage
�  It makes more sense on modeling languages like B

�  Still, some of the criteria are useful also for transition-
based notations with data information (e.g. EFSMs)

5

Notation:

�  Decision -> branch (an if-then-else)

�  A decision contains one or more primitive conditions (combined by
and, or, and not operators)

1. Structural model coverage
1.1 Control-flow oriented

Condition Coverage (CC)

Full Predicate Coverage (FPC)

Modified Condition/Decision Coverage (MC/DC)

Multiple Condition Coverage (MCC)

Decision/Condition Coverage (D/CC)

Decision Coverage (DC)

Statement Coverage (SC)

All possible combinations of
condition outcomes in each decision
- Decision with N conditions: 2N
tests

Requires condition c to independently
affect the outcome of decision d
(vary just c and get the rest fixed)
- Decision with N conditions: max 2N
tests

Each condition is tested with a
true and a false result
-Decision with N conditions: 2
tests (1 will all conditions
true, 1 with all false)

Test suite must execute
every reachable statement

Each reachable decision
made true by some tests
and false by others (also
called branch coverage)

When you
achieve both
DC and CC Tests forcing each condition c to true (false)

whenever a subpredicate P’ containing c is
directly correlated with the outcome d of the
decision (d equiv P’ or d equiv not(P’))
- Decision with N conditions: max 2N tests

Source: M. Utting and B. Legeard, Practical Model-Based Testing
6

1. Structural model coverage
1.1 Control-flow oriented (Examples)

�  CC – Ex: not(a>0) or (b>0 and c>0) -> E.g., write a test with
a>0, b>0, and c>0 and another with a<=0, b<=0 and c<=0

�  DC – Ex: not(a>0) or (b>0 and c>0) -> E.g., write a test with
a<=0, b>0, and c>0 (decision: true) and another with a>0, b>0 and
c<=0 (decision: false)

�  FPC – Ex: a>0 or (b>0 and c>0) - Condition a>0 is
directly correlated to the decision as making it true will make
the decision true, and when fixed to false the output will be
false by making b>0 and c>0 both false. Tests:

1: fix b<=0, c<=0, set a>0 -> condition = true
2: fix b<=0, c<=0, set a<=0 -> condition = false
3: fix a<=0, set b>0, c>0, -> condition = true
4: fix a<=0, set (b>0 and c>0) to be false -> condition = false 7

1. Structural model coverage
1.1 Control-flow oriented (Examples)

�  MC/DC – Fix a and c to a given value in such a way that
the test b>0 independently affects the outcome: write
the 2 tests: one with b>0 and another one with b<=0 (Do
the same later by fixing b and by fixing c). So, all the test
cases of FPC apply here (there is one more case):

1. Fixing b,c: a>0, b<=0, c<=0 -> decision: true
2. Fixing b,c: a<=0, b<=0, c<=0 -> decision: false
3. Fixing a,c: a<=0, b>0, c>0 -> decision: true
4. Fixing a,c: a<=0, b<=0, c>0 -> decision: false
3'. Fixing a,b: a<=0, b>0, c>0 -> decision: true (this test was already
covered by test 3)
5. Fixing a,b: a<=0, b>0, c<=0 -> decision: false

8

1. Structural model coverage
1.1 Control-flow oriented

�  Often combined with transition-based and data-oriented
coverage criteria

�  Code coverage is based on statements, decisions (branches), loops,
and paths

�  Some modeling notations (eg. UML/OCL, B) have no loops!

�  Path coverage (test suite must execute every satisfiable path
through the control-flow graph) not possible in code-based testing
�  In pre/post notations: if all combinations of decision outcomes are

tested, path coverage is obtained (?!)
�  … so, no path coverage in previous slide 

�  FPC as defined here is different from the book!
�  Confusing as many different definitions -> we will not use FPC in this

course! 9

1. Structural model coverage
1.2 Data-flow oriented

All−def−use−paths

All−uses

All−definitions

Test suite to test all def-use pairs
(dv,uv) and to test all paths from dv
till uv

�  Control-flow graphs can be annotated with extra information
on the definition and use of data variables

�  Def-use pair (dv,uv) – dv is a definition of v, uv is its use

Test suite to test all def-use pairs
(dv,uv) (all feasible use of all
definitions)

Test suite to test at least one def-
use pair (dv,uv) for each def. dv 10

Difference
between
All.uses and
All-def-uses:
the latter must
check all the
branches
linking d and u

1. Structural model coverage
1.3 Transition-based

�  Transitions systems made up of states and transitions

�  Depending on notation, transitions labeled with inputs,
outputs, events, guards, and/or actions

�  Usually models parallel systems

�  A configuration is roughly a snapshot of the active
states (of each parallel process)

�  In this coverage criteria we restrict to reachable
paths

11

1. Structural model coverage
1.3 Transition-based

All−Round−Trips

All−Paths

All−Configurations

All−Loop−Free−Paths

All−One−Loop−Paths All−Transition−Pairs

All−Transitions

All−States

Every configuration is
visited at least once
(if no parallelism, idem
All-states)

Every state is visited
at least once

Every transition of
the model traversed
at least once

Every pair of adjacent
transitions traversed
at least once

Visit all the loop-free
paths plus all the
paths that loop once

Every loop-free (no
repetition of config./
states) path traversed
at least once

Every path traversed at
least once (exhaustive
testing of control struct.) Test each loop

(iterate only once),
but no need to check
all paths preceding
or following a loop
(at least one
reaching the loop)

12

1. Structural model coverage
1.3 Transition-based

REMARK

�  According to Utting & Legeard’s book (p.119) All-Round-
Trips should require an All-Transitions coverage too (and
thus an arrow from the former to the latter should be
present in the picture in previous slide). However, in this
course we will take the less strict definition (consistent
with the picture) that this is not the case.

�  That is: All-Round-Trips coverage does not require
full coverage of all transitions, but only that all loops
are part of the test suite (finishing in the final state)

13

1. Structural model coverage
1.3 Transition-based

S4S1 S2 S3

B

E

G

F
D

CA

Source: M. Utting and B. Legeard, Practical Model-Based Testing Groups 2-5 persons: 15 min

�  All-states
�  All-configurations
�  All-transitions
�  All-transition-pairs

�  All-loop-free-paths
�  All-one-loop-paths
�  All-round-trips
�  All-paths

�  Write down examples of each transition-based coverage criteria for the
above FSM

14

1. Structural model coverage
1.3 Transition-based

S4S1 S2 S3

B

E

G

F
D

CA

Source: M. Utting and B. Legeard, Practical Model-Based Testing

�  All-states
�  A;C;G

�  All-configurations
�  Equal to All-states

�  All-transitions
�  A;C;E;F;G and B;D;G

�  All-transition-pairs
�  Eg..at state S2: A;C, A;D, B;C,

B;D (do the same for each state)

�  All-loop-free-paths
�  A;C;G, A;D;G, B;C;G, B;D;G

�  All-one-loop-paths
�  4 paths of all-loop-free-paths + combination of

each of these with a single loop around either E
or F transition (4+2*4=12 tests)

�  All-round-trips
�  A;C;E;G, A;C;F;G (even simpler: A;C;E;F;G)

�  All-paths
�  4 paths of all-loop-free-paths but extended with

any number of E and F transitions

Solution:

15

2. Data coverage criteria

�  Useful for choosing good data value representatives as
test inputs

�  Over a domain D, two extreme data coverage criteria
�  One-value: at least one value from D (in combination

with other test criteria might be useful)
�  All-values: every value in D. Not practical in general

�  More realistic:
1.  Boundary values
2.  Statistical data coverage
3.  Pairwise testing

16

2. Data coverage criteria
2.1 Boundary value testing

One−Boundary Coverage

Multidimensional

Coverage
All−Boundaries

Coverage
All−Edges

Coverage Criteria for
Various "Domain Testing"

Continuous Inputs

Boundaries Coverage

For each predicate a
test case for every
boundary point
satisfying the predicate

For each variable on a
predicate assign the
minimum value in at least
one test case (similarly for
the maximum value)

All “edges” of a
predicate should
be tested (or at
least one point per
edge)

For each predicate at
least one boundary
point of the predicated
should be tested

Choosing values at the boundaries of input domains

�  Usually constraints on values are predicates representing some
regions: 1<=x<=5 and 2<=y<=7

17

2. Data coverage criteria
2.1 Boundary value testing

1.  Write a geometrical representation of the following
predicate, and consider what could be the boundary
values for such predicate (integer)

 (x2+y2<=25) & (0<=y) & (x+y<=5)

2.  Write boundary-oriented coverage for the case above so
you achieve
�  All-boundaries coverage
�  Multidimensional-boundaries coverage
�  All-edges coverage

Groups 2-5 persons: 10 min
18

2. Data coverage criteria
2.1 Boundary value testing

Source: M. Utting and B. Legeard, Practical Model-Based Testing

�  All-boundaries coverage
�  The 22 boundary points

depicted in the picture
�  Multidimensional-

boundaries coverage
�  Tests: (5,0), (-5,0),

(0,5), and (x,0), for any
-5<=X<=5

�  All-edges coverage
�  Eg. (5,0) and (0,5)

Solution:

Utting & Legeard
book: Fig. 4.7, pp.125!

19

2. Data coverage criteria
2.2 Statistical data coverage

�  Choosing random tests is as good as finding faults as
partition testing
�  Could then be more cost-effective

�  Criterion: Random-value coverage (with distribution D)
�  Values of a given data variable in the test suite to follow

the statistical distribution D

Example:

car_speed >50 and rain_level >5 (with car_speed: 0..300 and rain_level:
0..10)

�  Boundary testing: 4 tests (51 and 300 for car, 6 and 10 for rain)

�  If we want 50 tests: generate them randomly with some distribution

20

3. Fault-based criteria

�  A software testing technique using test data designed
to demonstrate the absence of a set of pre-specified
faults (known or recurrent faults)

�  Mutation testing: program mutants are created by
syntactic transformation of the SUT
�  Using mutation operators

�  Executing a test suite on all mutants allows to measure
the percentage of mutants killed by the test suite
(exposing a fault in the mutant)

�  Mutation of operators also guide the design of tests
�  Tests helping to distinguish a program from its mutant

21

4. Requirements-based criteria

�  Each requirement (a testable statement of some
functionality that the product must have) should be
tested

�  Requirements can be used both to measure a level of
coverage for the generated test case and to drive the
test generation itself

�  All-requirements coverage
�  Record the requirements inside the behavioral model (as

annotations)
�  Formalize each requirement and use it as a test selection

criterion
22

5. Explicit test case
specifications

�  Besides the model, the tester writes test case
specifications in some formal notation

�  Used to determine which tests to generate

�  Notation could be the same as the modeling language,
but not necessarily

�  FSMs, regular expressions, temporal logic, Markov
chains, etc.

�  Give precise control over generated tests

23

6. Statistical test generation
methods

�  In MBT statistical test generation is usually used to
generate test sequences from environmental models

�  Usually using Markov chains (roughly, a FSM with
probabilities)

�  Test cases with greater probability to be generated
first (and more often if organized in different
classes)

24

Combining test selection criteria

�  Criteria seen have different scopes and purposes: good
to combine them

�  See some interesting examples in Utting & Legeard,
section 4.7 (pp.134-135)

25

References

�  M. Utting and B. Legeard, Practical Model-Based
Testing. Elsevier - Morgan Kaufmann Publishers, 2007
�  Chapter 4

26

Next lecture…

�  Next lecture (Wed Apr 30)

Lecture 11: “Graph Theory Techniques in MBT”

27

