
Model-Based Testing
(DIT848 / DAT260)

Spring 2014
Lecture 2

Specification and Black Box Testing

Gerardo Schneider
Dept. of Computer Science and Engineering

Chalmers | University of Gothenburg

(Some slides based on material by Magnus Björk)

1

Chalmers
1.  ÍVAR H. JÓHANNESSON (MPSOF)

varh@student.chalmers.se

2.  RADHA THIAYAGARAJAN
(MPSOF) radha@student.chalmers.se

3.  YASAMAN VAZIRI (MPNET) vaziri@student.chalmers.se

4.  MAGNUS ÅGREN (MPALG) magagr@student.chalmers.se

GU
� Henrik Larsson (SE) henke@henkelarsson.se

Student Representatives

2

TEST

Terminology

 Verification Validation

Code is executed
•  sequential
•  concurrent
•  distributed

user

Dynamic Static
Artifact Inspection

manual automatic
•  Static analysis
•  Formal methods White box

coverage
valgrind

Black box ……
Several

techniques

3

Test cases
�  Clear description of tests to be performed

�  Possible for a colleague or a computer to perform

�  Manual, scripted or automatic:
�  Manual:

�  Clear text description for humans
�  Typically used for system properties

�  Scripted:
�  Executable description for computers
�  Typically used for lower level properties (unit tests, etc)
�  E.g. in xUnit, DejaGnu, bash or perl
�  Must still be readable for developers!

�  Serves a documentation purpose
�  Automatic:

�  Automatically generated and executed by computer
�  Based on formal specification

4

Test case ’elements’
�  Fundamental components

�  Action: what to do in the test
�  Expected outcome: how the system should respond

�  Good expected outcomes are specific
�  ”The function call returns 3”
�  ”’Hello World!’ is printed on the screen”

�  Bad expected outcomes:
�  ”The expected number is returned”

�  Optional components:
�  Id/name
�  Description/purpose
�  Reference to requirement/

part of specification
�  Preconditions
�  Initialization
�  More: see IEEE 829

�  Typically…
�  Id/name
�  Description/purpose
�  Precondition
�  Initialization
�  Action
�  Expected outcome

5

Example: Test case for CD
player

Id: CDP-Vol-1

Purpose: checking volume control

Precondition: Music is playing and heard in speakers

�  Action a: Turn volume control, try both directions
�  Expected outcome: Turning volume control clockwise increases

volume of music, counterclockwise decreases volume

�  Action b: Turn volume control counterclockwise as far as
possible
�  Expected outcome: Music playback completely silent at stop

�  Action c: Turn volume control slightly clockwise
�  Expected outcome: Music is audible within 3mm of silent

position
6

�  A test case verifies fulfilment of some
particular aspect of the specification

�  Test cases are usually (initially) derived from
the specification
�  Coverage techniques help to direct focus

�  A bunch of test cases is not a specification

Test cases and specifications

7

Software specification
�  What is the software supposed to do?

�  Functional and non-functional properties
�  Functional: Specific behaviour of system

�  If user does X, then system does Y
�  Normally only refers to interface of the component being

specified
�  Non-functional

�  Other properties, such as:
�  Efficiency
�  Usability
�  Performance
�  Coding standards
�  Licensing

8

Different kinds of specifications
Informal specifications:

�  Descriptive text

(Semi-) formal specifications:

�  UML-diagrams
�  Behavior diagrams (use-

case diagrams, state
diagrams)

�  Interaction diagrams
(sequence diagrams,
communication diagrams)

Formal specifications:

�  State-machine models
�  Finite-State Machines

(FSM)
�  Extended Finite-State

Machines (EFSM)

�  Algebraic specifications
�  Equations relating

functions to each other

�  Temporal logic
9

Finite State Machines (FSM)

�  Powerful description mechanism

�  Variants of FSM are used in various places (some
UML diagrams, formal specification languages, …)

�  Consists of
�  A finite number of states
�  Transitions between the states
�  (Very often we also use labels on states/transitions)

10

Example: FSM of a CD-player

stop

play/
pause

stop

play

pause

Is it possible to
obtain a more precise

FSM?

11

CD-player FSMs
�  The first version is a ”model”of the second

�  Alternative (better) terminology: abstraction
�  Warning! Depends who you ask and how ”precise” you want to be:

abstraction and model are not the same!
�  A model is an abstract representation of the reality

�  It provides a simpler view of a property/system
�  In some cases information is lost, in others is not

�  First FSM adequate for ”motor running”
�  First FSM not adequate for ”music is playing”

�  Abstraction is the process of taking away characteristics from something in
order to reduce it to a set of essential ones
�  It typically only retains information which is relevant for a particular purpose
�  There is a lost of information
�  Ex: “Odd-Even” is an abstraction of the natural numbers

�  Both FSM versions are models of the whole (real) player
�  Do not include e.g. current track and position of laser pickup

12

Manual test case (example)

Name: CD Play 1

Purpose: Checking basic playback

Preparation: Turn on CD-player with CD in tray

�  Action: Press Play/Pause

�  Expected outcome: CD starts playing

13

More manual test cases (example)
Name: CD Play 2

Purpose: Checking playing, pausing, and stopping

Preparation: Turn on CD-player with CD in tray

�  Actions:
�  a: Press Play/Pause

�  Expected outcome: CD starts playing
�  b: Press Play/Pause

�  Expected outcome: CD stops playing
�  c: Press Play/Pause

�  Expected outcome: CD starts playing where it
stopped

�  d: Press Stop
�  Expected outcome: CD stops playing

�  e: Press Play/pause
�  Expected outcome: CD starts playing from

beginning of first track

stop

play

pause

How much
is covered
by this test

case?

14

Specification coverage:

�  Covered states:
�  3 of 3

�  Covered transitions:
�  4 of 12

�  Some transitions
superpositioned in figure

�  Uncovered transitions can give
a hint of missing test cases

stop

play

pause

More manual test cases (example)

15

FSM: To think about…
�  About transitions

�  One transition out of each node for each possible event
�  Some transitions missing

�  Cannot happen
�  Error if happens
�  Ignored if happens

�  No labels? Maybe the transition is not needed
�  Deterministic/nondeterministic

�  Deterministic FSM
�  It’s in exactly one state at any time
�  Only one transition possible to take

�  Nondeterministic FSM
�  Several states may be active at a time
�  Several transitions may be enabled under same input 16

Random testing against FSMs
�  Representing an FSM (Implementation)

�  Set of states (e.g. enum type, bounded integers)
�  One initial state

�  Set of events
�  Transition function: State -> Event -> State

�  Useful functions for verifying against FSM
�  Precondition: State -> Event -> Bool

�  Which events can happen now?
�  Postcondition (expected outcome):
 State -> Event -> SystemState -> Bool

�  Test that the actual system is in a correct state after the transition
�  Looks at the actual system to test

�  Generate events randomly
�  Make sure they respect precondition

�  You can implement this in your favourite test framework

�  …or get QuickCheck, which does it automatically 17

Model-based verification

�  Writing test cases can be a very tedious task

�  State transition systems can be used to automate
test case generation (later in this course)
�  Model-based testing

�  Advanced tools that automatically check whether a
system is modelled by a given FSM
�  Model checking

18

Extended Finite-State Machines

�  Finite-State Machines have concrete state spaces

�  Extended Finite-State Machines (EFSM)
�  State space represented by structures like integers,

lists, tuples, strings, and enumeration types
�  May have infinite state space

�  Random testing against EFSM:
�  Just as for FSM

19

Example EFSM: CD player
�  State representation: (S,T)

�  S: Playing state (stopped, playing, paused)
�  T: Track number

�  Initial state:
�  (stopped, 1)

�  Events:
�  Play/pause pressed
�  Stop pressed
�  Skip forwards pressed
�  Skip backwards pressed
�  End of track reached (eot)
�  End of disc reached (eod)

20

CD player preconditions
�  Almost all events are possible at all times

�  Buttons can be pressed at any time
�  But eot and eod can only happen during playback

�  precondition((stopped, t), eot)
�  Is it possible to be in a state where the CD player is not playing

and it is ”reading” any track t and ”react” to the end-of-track
event?

precondition((stopped, t), eot)

precondition((paused, t), eot)

precondition((stopped, t), eod)

precondition((paused, t), eod)

precondition((s,t), e)
(for any other state s, track t, any other event e may happen?)

-> false

-> false

-> false

-> false

-> true

21

CD Player transitions

stop

play

pause

eot

eod

T := 0
T := T+1
T := T-1

T := 0
T := 0

We ignored number
of tracks to simplify

the example

T := T+1
T := T-1
T := T+1

T := T+1
T := T-1

T := 0 T := min(T+1, lastTrack)
T := max(T-1, 0)
 or use modulo

22

�  Three units:
�  Customer ticket terminal

�  Button B1 (”press for ticket”)
�  Ticket printer

�  Number display
�  Number display D
�  Speaker S

�  Attendant terminal
�  Button B2 (”next customer”)

Press
here

17

21
Next

customer

Turn ticket system

23

Turn ticket system

Informal specification

�  At entrance, customer presses B1, which causes a ticket to be printed
�  The first ticket has number 1, the number is increased by 1 for successive

tickets. Ticket 999 is followed by 0.

�  When attendant presses B2
�  If receipts have been printed with higher number than the currently displayed,

the display number is increased.
�  If no such receipts have been printed, nothing happens.

�  D initially displays the number 0. Display increments adds 1 to the current
number, unless the current number is 999 in which case the new number is
0. Each increase is accompanied by a sound from S.

Press
here

17

21
Next

customer

24

Group exercise
�  Come up with a finite-state machine that models

this system
�  Many different variants exist with different levels

of complexity and accuracy

�  What are the limitations of your model?

�  Come up with an extended finite state machine
that models the system more accurately
�  Perhaps not based on the FSM, as the CD player was

25

The simplest FSM representation
of all

�  This FSM models all systems with two events

�  Hence, it is useless!

B1
B2

26

FSM representation
(very simple)

No
queue

Queue

B1

B1

B2

B2

B2

outcome: ticket printed, number increases

outcome: ticket printed, number increases
outcome: display number increased, beep

outcome: display number increased, beep

outcome: nothing happens

27

Properties of this FSM
�  Simple! (easy to understand, easy to come up with)

�  Nondeterministic
�  (Why?)

�  Can determine:
�  Correct behaviour of one B2 press after a B1

�  Cannot determine:
�  Correct behaviour of multiple B2 presses
�  Exact numbers on tickets and display

�  Useful for:
�  Understanding
�  Writing some testcases
�  Automatically prove some properties

28

FSM representation
(bounded queue)

Queue
len: 0

Queue
len: 1

B1 B2

Queue
len: 2

B1 B2

Queue
len: 3+

B1 B2

B1
B2

B2

outcome: display number
 increased, beep

outcome: ticket printed
 with increased
 number

outcome: nothing happens

29

Properties of this FSM
�  Still rather simple

�  Still nondeterministic (in top state)

�  Can determine
�  Correct behaviour as long as not more than 2 people in queue

�  Cannot determine
�  Correct behaviour with more than 2 people in queue
�  Exact numbers on tickets and display

�  Useful for
�  Understanding
�  Writing more testcases? (probably not more than first)
�  More accurate automated testing 30

EFSM representation 1
�  State:

�  Number of people in queue (n)

B1

B2

n := n+1

if n >= 1 then
 n := n-1;
else
 null;
fi

Expected outcome: ticked printed
with increased number

Expected outcome: Display
number increased, people in

the queue, beep heard

Expected outcome:
nothing happens

31

Properties of this EFSM
�  Simple?

�  Deterministic!

�  Can determine
�  How to act (whether to increase display number)

�  Cannot determine
�  Exact numbers on tickets and display

�  Useful for
�  Understanding?
�  Even more accurate automated testing

32

EFSM representation 2
�  State:

�  Last printed number (P), currently displayed number (Q)
�  Initial state: P=0, Q=0

�  Next state function:
�  B1: P := P+1 mod 1000

�  Expected outcome: ticket printed with number P
�  B2: if P=Q then

 null; // expected outcome: nothing happens
 else
 Q=Q+1 mod 1000;
 // expected outcome: D displays Q, beep

�  Precondition function:
�  Anything is possible

We’ll say that variables in expected
outcome refer to new value

33

Properties of this EFSM
�  Harder to understand

�  Encodes the whole ”program” in one transition

�  Deterministic

�  Can determine
�  Full behaviour of system

�  Cannot determine
�  Nothing

�  Useful for
�  Complete verification of system
�  Starting point of implementation

34

Black box testing

35

Black box and white box testing

Black box testing: Test tactic in which the test object is
addressed as a box one cannot open.

A test is performed by sending an input value and observing the
output without using any knowledge about the test object
internals.

White box testing: Test tactic in which the test object is
addressed as a box one can open.

A test is performed by sending an input value and observing the
output and internals while explicitly using knowledge about the
test object internals.

event

starts

Another event

event

event

event

software

software

 case Prop of
 true -> …..;
 false ->…..
end

Black Box testing
Techniques

�  Random Testing

�  Equivalence Class Partitioning

�  Boundary Value Analysis

�  Cause and Effect Graphing

�  State Transition Testing

�  Error Guessing

�  Use case testing

�  … …

Techniques tell you
how to select the

inputs:
How to create a

test case

37

Misleading…
Black box testing is often depicted as:

which might be misleading….

It suggests that given an input, the output can be checked against an
expected output.

In case the test object has memory, the expected output depends on
the history!

weetnie weetwel

init

stable

software

software

“Box” has state
Testcase: Start the test object, send 1 value;

Execute 5 test cases

software

 weetnie weetwel

init

stable

24

24,0

software

 weetnie weetwel

init

stable

24

24,0

software

 weetnie weetwel

init

stable

20

20,0

software

 weetnie weetwel

init

stable

21

21,0

software

 weetnie weetwel

init

stable

26

26,0

39

Testcase: Start the test object, send 5 values;

Execute 1 test case

software

 weetnie weetwel

init

stable

24 24 20 21 26

24,0 24,0 22,0 20,5 23,5

Specification:

Return average temperature over today
and yesterday

Before execution of a test case, the test object has to be brought
into a known state. From there, as many as possible other states
should be reached by different test cases.

“Box” has state

40

Black box and white box testing

Black box testing: Test tactic in which the test object is
addressed as a box one cannot open.

A test is performed by sending a sequence of input values
and observing the output without using any knowledge
about the test object internals.

White box testing: Test tactic in which the test object is
addressed as a box one can open.

A test is performed by sending a sequence of input values
and observing the output and internals while explicitly
using knowledge about the test object internals.

event

starts

Another event

event

event

event

software

software

 case Prop of
 true -> …..;
 false ->…..
end

Creating test cases
�  Look at the specification, find different cases

�  Enumerate statements in specification, make sure that
each aspect is covered by at least one test case

�  Different representations like FSM can help
�  Go through use cases, refine them into test cases

�  Use case: idealized description of interaction with system
�  Test case: detailed description using the system interface

�  Equivalence class partitioning
�  In order to reduce number of test cases
�  Find classes of situations where behaviour should be

similar
�  FSM specifications really useful

42

�  Boundary values
�  Malfunctions often occur around boundaries
�  Are there boundaries? Try out values close to limits

�  Maxint? (should system work correctly for maxint?)
�  ATM: What if user wants to withdraw exactly all money from

account?
�  CD: Make sure that last track on CD can be played

�  Disadvantage: identifying boundaries may require knowledge
about code
�  … but once one knows about the boundaries, the test case can

be written without reference to internals

�  Error guessing
�  Similar to boundary values: are there values that seem

especially dangerous?
�  How about if the century actually ends, so year = 00 ?

Creating test cases

43

�  Random testing
�  Write general test cases

�  Precondition: Account contains m SEK, n <= m
�  Action: User withdraws n SEK from account
�  Expected outcome: New balance is m-n SEK.

�  Generate random sequences of test cases
�  …but try to create sequences that make sense (not

much worth if 99.9% of your tests end up in expected
failures)

�  Code coverage analysis (next lecture)

Creating test cases

44

Group exercise
�  Come up with at least 2

test cases you can
extract from the EFSM

�  Give 2 test cases you
cannot extract from the
ASM

stop

play

pause

eot

eod

T := 0
T := T+1
T := T-1

T := 0
T := 0

T := T+1
T := T-1
T := T+1

T := T+1
T := T-1

T := 0

45

�  Examples of test cases you can get from the EFSM
�  When the CD player is playing, after pressing ”stop” the

player stops
�  When the CD player reaches an ”eot” it changes track
�  When pressing ”pause” and then ”play” (without pressing

anything else in between), the track doesn’t change

�  Examples of test cases you cannot get from the EFSM
�  Cannot test what happens when pressing ”pause/play” and

”stop” at the same time
�  While in ”pause” we cannot test what happens when we

press the ”forward” button till the ”eod”

Group exercise

46

�  The AC of the car didn’t work when
certain sequence of actions were done
�  Put the key, take it, and put it again

with certain time before turning on
the engine

�  Where was the problem?

�  Who was responsible (that part of the
software was outsourced)

47

Software Problems in Automobiles
A real case

How to identify the problem and find a solution?

�  Specification was semi-formal (rather informal) some parts written
as a FSM

�  There was a transition with condition “A, B”. Any problem?
�  Engineers from car company: “,” was an OR but subcontractors

interpreted as an AND

�  The AC of the car didn’t work when
certain sequence of actions were done
�  Put the key, take it, and put it again

with certain time before turning on
the engine

�  Where was the problem?

�  Who was responsible (that part of the
software was outsourced)

48

Software Problems in Automobiles
A real case

How to identify the problem and find a solution?

�  Specification was semi-formal (rather informal) some parts written
as a FSM

�  There was a transition with condition “A, B”. Any problem?
�  Engineers from car company “,” was an OR but subcontractors

interpreted as an AND

Specifications are important!!
Precise, unambiguous, clear -

Formal!

Btw, not found
with testing but
by using Formal

Methods

White Box Testing and Coverage

Next lecture

49

